
UCLA ENG 43-93
June 1993

Demonstration of the Dynamic Flowgraph Methodology

using the Titan II Space Launch Vehicle

Digital Flight Control System

M. Yau, S. Guarro, G. Apostolakis

Mechanical, Aerospace and Nuclear Engineering Departmem

University of California

Los Angeles, CA 90024-1597

Table of Contents

List of Figures .. iii

List of Tables .. v

Acknowledgments ... vii

Abstract ... ix

1. Introduction .. 1

. The Titan II SLV Digital Flight Control System (DFCS) 5

2.1 The Titan II System 5

2.2 Features of the Titan II SLV DFCS 6

, Limitations of Traditional Software Reliability Analysis Techniques 9

3.1 Testing .. 9

3.2 Formal Verification 10

3.3 Discrete State Simulation 11

3.4 Fault Tree Analysis 12

, Overview of the Dynamic Flowgraph Methodology (DFM) 15

4.1 Framework for Model Construction (Step 1) 17

4.1.1 Building Blocks of DFM 17
4.1.1.1 Process Variable Nodes 17

4.1.1.2 Transfer Boxes 19

4.1.1.2.1 Decision Tables 19

Transition Boxes 20

Causality Edges 21

Conditioning Edges 21

Model Assembly 21

4.1.1.3

4.1.1.4

4.1.1.5

4.1.2

5. Modeling the Titan II SLV DFCS with DFM 23

o A Solution to the Problem of Combinatorial Explosion 37

6.1 The Newton-Raphson Method 39

6.2 Solution Solving Approach 40

6.3 Example .. 44

7. Conclusion ... 77

8. References ... 79

Appendix A Logic Flowgraph Methodology (LFM) 81

A. 1 LFM Concept 81

A.2 Example.. 82

Appendix B
B.1
B.2
B.3

Appendix C
C.1
C.2
C.3
C.4

DynamicFlowgraphMethodologyAnalysis 85
Frameworkfor ImplementingStep2 85
Implementationof Step2 85
ExampleApplication 85

Titan II SpaceLaunchVehicleDigital Flight Control System 89
Flight Control Software 89
The Attitude RateSensingSystem........................ 90
The Inertial MeasurementUnit (IMU) 93
The Hydraulic Actuators 93

List of Figures

Figure 2.1

Figure 4.1

Figure 5.1

Figure 5.2

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure A. 1

Figure B. 1

Figure B.2

Figure C. 1

Figure C.2

Figure C.3

Figure C.4

Figure C.5

Block Diagram of the Titan II SLV DFCS

Building Blocks of a DFM Model

DFM Model of the Titan II Flight

DFM Model of the Flight Control

Control System

Software

Fault Tree for (0p,0R,0V) = (2°,2.5 °, 1.5 °)

Software Code for Solving Equations

Result of Iteration

Result for a Different Initial Guess

Example of LFM Model and Fault Analysis

Illustration of Fault Tree Construction

A Timed Fault Tree for the DFM Model in Figure B. 1

Sharing of Computer Resources

Schematic of a Gyro

The Inertial Measurement Unit

Schematic of an Accelerometer

Working of the Hydraulic Actuators

7

18

29

30

38

47

61

69

84

87

88

91

92

94

95

96

iii

iv

List of Tables

Table 5.1

Table 5.11

Table 5.111

Hardware Parameters of the Titan II DFM Model

Software Parameters of the Titan II DFM Model

The Subroutine BLOCK 1

24

25

34

V
F"_11mlp_nl_4 p_ PJUtK. _.Mk_..

Acknowledgments

The project discussed in this report was sponsored by Grant NAG 5-1440 from the

NASA/Goddard Space Flight Center and Grant NCC 2-374 from the NASA Ames Dryden

Flight Research Facility. The authors wish to thank Larry Hyatt of the NASA/Goddard

Space Flight Center and Victoria Regenie of the NASA Ames Dryden Flight Research

Facility for supporting this project.

vii

..... _t .¸

_oo

Vlll

Abstract

Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the

modeling and analysis of the hardware and software components of an embedded system.

The objective is to complement the traditional approaches which generally follow the

philosophy of separating out the hardware and software portions of the assurance analysis.

In this paper, the DFM approach is demonstrated using the Titan II Space Launch Vehicle

Digital Flight Control System. The hardware and software portions of this embedded

system are modeled in an integrated framework. In addition, the time dependent behavior

and the switching logic can be captured by this DFM model. In the modeling process,

it is found that constructing decision tables for software subroutines is very time

consuming. A possible solution is suggested. This approach makes use of a well-known

numerical method, the Newton-Raphson method, to solve the equations implemented in

the subroutines in reverse. Convergence can be achieved in a few steps.

ix • ._\\\

I. Introduction

This report discusses the modeling of the Titan II Space Launch Vehicle (SLV) Digital

Flight Control System (DFCS) using Dynamic Flowgraph Methodology (DFM). The

eventual objective is to make use of the DFM model to perform a safety analysis of the

system.

The Titan II SLV Digital Flight Control System can be classified as an embedded system,

i.e., a system in which the functions of mechanical and physical devices are controlled

and managed by dedicated digital processors and computers. The latter devices, in turn,

execute software routines (often of considerable complexity) to implement specific control

functions and strategies. In the Titan II SLV Digital Flight Control System, the Missile

Guidance Computer (MGC), which is the on-board digital processor, monitors and

receives inputs from the electromechanical sensors (the accelerometers, the synchros, and

the attitude rate sensors). The computer then executes the flight control software to

command the mechanical actuators, namely the thrust deflection gimbal actuators. Further

discussion of the Titan II SLV Digital Flight Control System can be found in Section 2

and Appendix C.

The Titan II SLV DFCS is used as a test case to demonstrate Dynamic Flowgraph

Methodology (DFM). DFM is a new approach developed to integrate the modeling and

analysis of the hardware and software components of an embedded system. The

approaches that have been proposed and/or developed in the past generally follow the

philosophy of separating out the hardware and software portions of the assurance analysis.

The hardware reliability and safety analysts evaluate the hardware portion of an embedded

system under the artificial assumption of perfect software behavior. The software

analysts, on the other hand, usually attempt to verify or test the correctness of the logic"

implemented and executed by the software against a given set of design specifications,

but do not have any means to verify the adequacy of these specifications against unusual

circumstances developing on the hardware side of the overall system, including hardware

fault scenarios and conditions not explicitly envisioned by the software designer. A

O_ PAGE" BI_ANK r_OT F"_ME'_

discussion of the limitations of these traditional approaches is presented in Section 3.

DFM is developed to model and analyze an embedded system in a "systems"

approach. This methodology combines features of an existing technique, Logic

Flowgraph Methodology (LFM), with discrete state transition models. Thus, DFM

provides an inductive (i.e. reverse causality backtracking) analysis capability while at the

same time provides the ability to keep track of the complex dynamic effects associated

with sequential and time dependent software executions and digital control system

behavior. The system analyzed by DFM can either be a design concept or an existing

embedded system. This paper shows the application of DFM to an existing system with

the software available for analysis. An application of DFM to analyze the design of an

embedded system with only the software specifications can be found in [Garrett, 1993].

A discussion of LFM is presented in Appendix A. A brief overview of DFM is given in

Section 4, and a more in-depth discussion of this approach can be found in Appendix B.

The DFM model of the Titan II SLV DFCS is developed. This model captures the

essential functional and time-dependent behavior of the system. The relationships

between the various software and hardware variables in the Titan II system are presented

and the execution of the flight control software of this system is modeled as a series of

discrete state transitions. One of the steps in developing the model is the construction of

decision tables that represent functional relationships between software and/or hardware

parameters. However, the problem of combinatorial explosion arises in constructing the

decision tables for the Titan II software modules and the resulting tables are too big for

storage and easy usage. The approaches to modeling the Titan II SLV DFCS, as well as

the combinatorial explosion problem encountered with the decision construction, are

discussed in Section 5.

It is recognized that sometimes decision tables need not be constructed prior to the

analysis. In many cases, the software module algorithms of the embedded system can be

solved "in reverse" in the inductive (backtracking) analysis, instead of looking up entries

in the relevant decision tables. These software module algorithms can be in the form of

,)

specification equations or the actual implementation code. Thus, the DFM approach can

be applied to either test the design of the embedded system or the actual system itself.

The solving of the software module algorithms makes use of a well-known numerical

method, the Newton-Raphson method, for solving a system of non-linear equations. A

discussion of this approach, as well an example, is presented in Section 6.

4

2. The Titan II SLV Digital Flight Control System (DFCS)

Before the discussion of the limitations of traditional reliability and safety analysis

approaches with respect to the Titan II SLV DFCS, and how DFM fills in the deficiencies

found in these approaches, we should take a moment to review the features of the system

that need to be addressed in the analysis. A discussion in greater detail about the "I_itan

II SLV DFCS can be found in Appendix C.

2.1 The Titan II System

The Titan II Space Launch Vehicle (SLV) is a modified Titan II ICBM, which is a two

stage rocket [Martin Marietta, 1988], [Martin Marietta, 1991]. Stage I provides thrust for

the first 150 sec after liftoff to propel the vehicle to the upper atmosphere. After Stage

I separates from the SLV, Stage II ignites to power the vehicle to the orbital height. At

the end of the Stage II thrust decay, the vehicle relies on minor attitude adjustments to

bring itself to the correct orientations for payload release.

The function of the Digital Flight Control System (DFCS) is to stabilize the vehicle

during all phases of flight (launch through payload separation). Vehicle attitude control

is accomplished via thrust vector control (TVC) during powered flight (from liftoff

through Stage II shutdown) and attitude control thrusters during coast flight (from Stage

II shutdown to payload separation). The system also establishes the flight path of the

vehicle by implementing all steering commands issued by the guidance system. It should

be noted that the flight path of the vehicle is not fixed. It is only an optimal path that

balances between excessive gravity loss and overheating.

The Digital Flight Control System consists of:

- The Missile Guidance Computer (MGC) and the Flight Control Software

- The Attitude Rate Sensing System

- The Inertial Measurement Unit (IMU)

- Hydraulic actuators

5

PAGE EL_t_ _)T FILMEO

Figure 2.1 shows a block diagram of the embedded system.

The Inertial Measurement Unit measures the current vehicle orientation and acceleration,

while the Attitude Rate Sensing System determines the pitch rate and yaw rate. The

measurements from these sensors are then used in the flight control software to determine

the appropriate engine nozzle deflection commands to be given to the hydraulic actuators.

A detailed description of each of these sub-systems is presented in Appendix C.

2.2 Features of the Titan II SLV DFCS

The Titan II SLV Digital Flight Control System is a complex embedded system consisting

of numerous hardware components and a large software code component. The software

code is made up of more than 50 subroutines, and some of the subroutines have more

than 200 lines of code written in FORTRAN. The execution order of the subroutines is

not fixed; there are numerous switching reflecting maneuvers, shutdown, and changing

stages. In addition, the hardware and software portions of the system are in constant

interaction, with the sensors providing readings to the software, and the software giving

commands to the actuators.

Besides the complexity in size and functions, the system is also dynamic. The software

is executed in interdependent cycles; a minor cycle of 40 ms or 20 ms depending on the

flight stage, and a major cycle of 1 s. The more urgent calculations such as correcting

the flight path and determining the thrust deflections are carried out in the minor cycle,

while the task of controlling the general flight direction is implemented in the major

cycle. Additionally, the program is interrupted every 5 ms for reading inputs from the

sensors, giving outputs to the actuators, or performing telemetry.

In view of the complexity and dynamic features of this system, we need a methodology

that is algorithmic, can handle hardware and software interactions, and can address the

dynamic issues. An algorithmic approach can allow its procedures to be automated. The

capability for automation is especially important for a huge and complex system like the

6

Attitude Rate

Sensing System

Inertial
Measurement

Unit

Missile Guidance
Computer and Flight

Control Software

Hydraulic
Actuators

Figure 2.1 • Block Diagram of the Titan II SLV DFCS

"7

Titan II SLV DFCS, as the analysis can easily become unmanageable by hand. The last

decade has seen much progress in the development and application of analytical

techniques to identify possible failure modes in complex engineering systems, and, more

recently, even to automatically diagnose faults in real time by means of computer-based

operation aids. The recent advent of expert system technology has opened the door to

easier implementation of well-known techniques such as fault tree analysis, and to the

development of structured knowledge bases on more sophisticated system modeling

frameworks such as influence diagrams and qualitative cause-and-effect models.

In addition to following an algorithmic approach, it is obvious that a methodology without

due regard to hardware/software interactions and dynamic features cannot be expected to

reasonably analyze this system.

8

3. Limitations of Traditional Software Reliability Analysis Techniques

The traditional software reliability techniques under consideration are testing, formal

verification, discrete state simulation, and fault tree analysis. These methodologies are

found to have drawbacks when applied to analyzing the Titan II SLV DFCS. The nature

and extend of these drawbacks are discussed below.

3.1 Testing

Testing is traditionally one of the most important activities carried out to assure that a

given design is, in its actual implementation, complying with certain assigned constraints

and specifications, be they in the realm of "peak performance", safety, or reliability. For

systems such as nuclear reactors, aircraft, and spaceships, where failures threaten life,

testing costs account for as much as 80% of the total manufacturing cost [Beizer, 1990].

This is also true for software systems, where the dominating cost is often not the cost of

designing and programming, but the cost associated with logic and implementation errors:

the cost of detecting them, the cost of correcting them, the cost of designing tests that

discover them, and the cost of running those tests [Beizer, 1990].

In traditional black box testing, the embedded system software is treated as a black box.

Combinations of inputs are fed into the software and the outputs produced are monitored

to discover incorrect behavior. The selection of the input domains to be tested is more

an art than a science. Choosing the inputs is largely based on judgement. Since system

failures usually arise with inputs corresponding to very special circumstances, it is very

likely that these inputs will be overlooked in the testing process.

In addition, the amount of sampling involved in black box testing is very large. As the

software used in the Titan II SLV Digital Flight Control System is very complex and

involves numerous switching actions, a huge set of inputs has to be chosen, and these

inputs must cover all the paths reachable via switching actions. The flight control

software operates on more than 50 inputs. Assuming we select 3 values for each input

in testing the flight control software, we have to sample more than 35o times

(approximately7 x 1023times). In reality, we may needmore than3 valuesfor each

input to reasonablycovermostof thereachableexecutionpaths.A taskof this magnitude

is nearly impossibleandcertainly impractical.

The magnitudeof samplinginputs canbe reducedby performingmoduletestingon the

subroutines,interfacetestingbetweenthe subroutines,and then integrating the results.

However,this approachstill involvesexecutingahugesetof input combinations.For the

particular subroutineBLOCK l, which operateson 9 input variables,selecting5 values

for eachinput duringmoduletestingimplies thatwe still needto sample59times(almost

2 million times).

Owing to the difficulty in selectinginputsand the magnitudeof samplingin black box

testing of the whole softwareor module testingof the subroutines,randomtesting is

impractical and almost impossiblewhen appliedto a complex systemlike the Titan H

SLV Digital Flight Control System.

3.2 Formal Verification

Formal verification is another approach to software reliability, and is gaining popularity

in the software community. Formal verification applies logic and mathematical theorems

to prove that certain abstract representations of software, in the form of logic statements

and assertions, are consistent with the specifications expressing the desired software

behavior. Recent work has been directed at developing varieties of this type of technique

specifically for the handling of timing and concurrency problems [Narayana and Aby,

1988], [Razouk and Gorlick, 1989].

Due to the abstract nature of the formalism adopted in formal verification, this approach

is rather difficult to use properly by an analyst without the specialized mathematical

background. In addition, the complexity in size and functions of the software used in the

Titan II SLV DFCS compounds this difficulty. It is not a trivial matter to express this

10

flight control softwarewith more than 10,000lines of code in terms of abstractlogic

statements.Finally, formal verificationdoesnot providea frameworkfor modelingand

analyzinghardware/softwareinteractions,which is an importantissuein analyzingthe

Titan II SLV Digital Flight Control Systemasmentionedearlier in Section2.

3.3 Discrete State Simulation

The third type of approach to software assurance is directed at analyzing the timing and

logic characteristics of software executions by means of discrete state simulation. In a

discrete state simulation, a model is developed to represent the possible paths and states

of a software system. The analyst then specifies an initial condition and simulates the

behavior of the system in the model. The purpose is to check that the initial condition

cannot lead to failure. This approach uses modeling techniques of various types, such as

queuing networks and Petri nets [Dummer, Reiche, and Hura, 1991], [Morgan and

Razouk, 1987], [Murata, 1989], [Leveson and Stolzy, 1987].

For example, in a Petri net analysis, a model is first developed to describe the possible

states of a system, and how the system can change from one state to another. This Petri

net model is made up of places, transitions, input functions, and output functions.

The places are used to represent states of the sub-modules making up the system. Hence,

a combination of places characterizes a particular state of the system. To help visualize

this, tokens can be put into these places. Thus, a particular distribution of tokens in the

places represent a particular state of a system.

Transitions link the places together to represent the change of states of the sub-modules.

The mapping between the input places and the output places for a transition is described

by its input function and output function. A transition is enabled when each of its input

places has at least one token. The change of state is modeled by removing the tokens

from the input places and depositing them into the output places. Thus, the distribution

of the tokens among the places is altered, representing a jump from one system state to

11

another.

Oncethis Petri net model is established,the analystcan definean initial condition for

simulation by specifyinga particulardistribution of tokens. Theenabledtransitionsare

then fired to simulatechangeof stateof thesystem. The newdistribution of thetokens

will enablea new set of transitions,andthe simulationprocessis continued. Thejump

from state to state is summarizedin the form of a reachabilitygraph. This graph

describesthe pathof the systemtransitionand its intermediatesteps. The reachability

graphis thencheckedto seeif a hazardousstate(correspondingto a distinctdistribution

of tokens)canbe reachedfrom the particularinitial condition. A detaileddiscussionof

Petri net analysiscanbe found in [Peterson,1981].

Although this approachcanbeextendedto modelcombinedhardware/softwarebehavior,

difficulties arisefrom the "marchforward" nature(in time andcausality)of this type of

analysis,which forces the analystto assumeknowledgeof the initial conditions from

which a systemsimulationcanbe started. In a largesystemsuchasthe Titan II SLV

DFCS, many combinationsof initial statesexist (as in testing)and the solution space

easilybecomesunmanageable.

3.4 Fault Tree Analysis

Conventional fault tree analysis is very well established in the areas of safety and

reliability analysis. Originally developed at the Bell Laboratories, fault tree analysis has

been used to analyze nuclear power plants [Henley and Kumamoto, 1991] and chemical

processes [Lapp and Powers, 1977]. Fault tree analysis has also been extended to analyze

software systems [Harvey, 1982], [Leveson and Harvey, 1983].

The difficulties in applying fault tree analysis to the Titan II SLV Digital Flight Control

System can be attributed to the technique's limitations in representing dynamic effects.

Fault trees are static diagrams depicting logical combinations of component conditions

which lead to a system failure. For the Titan II embedded system, it is an important issue

12

to addresshow hardwareand/orsoftwareconditionscanevolve over time and lead to

system failures. Unfortunately, this issue is not properly addressedby the fault tree

analysisapproach.

We have seenthat the conventionalsoftwarereliability analysismethodologiesarenot

satisfactorytools for analyzingthe Titan II SLV DFCS. Thesemethodologieslack the

capability to handlehardware/softwareinteraction,or are limited in dynamic modeling

features. A tool which canaddressthe issuesidentifiedearlier in Section2 is needed.

13

14

4. Overview of the Dynamic Flowgraph Methodology (DFM)

The Dynamic Flowgraph Methodology (DFM) has been developed as a tool to model and

analyze embedded systems in a "systems" approach. Both the hardware and software

portions of the embedded system will be represented and analyzed in an integrated

framework. It should be observed that the software portion can be in the form of actual

software codes or software design specifications. Thus DFM can be applied during the

design stage or after the completion of the embedded system. DFM will be tested using

the Titan II SLV DFCS, with the actual software available. Before discussing the DFM

approach to the Titan II embedded system in Section 5, this section provides an overview

of the methodology itself.

DFM is a tool for analyzing embedded systems with the purpose of 1) identifying how

certain postulated events (desirable or undesirable) may occur in a system, and 2)

identifying an appropriate testing strategy based on an analysis of the system's behavior.

DFM is based on the Logic Flowgraph Methodology (LFM) [Guarro and Okrent, 1984],

[Guarro, 1988], [Guarro, 1990], [Muthukumar, Guarro, and Apostolakis, 1991], which is

a concept for analyzing systems with limited dynamic features. The system under

consideration in LFM is represented as a logic network relating process parameters at

steady state. A discussion of the Logical Flowgraph Methodology is presented in

Appendix A. Certain features and rules are added to the LFM to address issues relevant

in embedded system analysis not cover by LFM. These issues are:

1) The need for a framework to represent time transitions. Discrete time transitions

are almost always present in embedded system software, and often present even

in embedded system hardware (eg., as a result of relay actions).

2) The need to identify and represent in a distinguishable fashion the

continuous/functional relations and the discontinuous/discrete logic influences that

are present in embedded systems.

DFM involves two major steps. In the first step, a model of the embedded system that

15

PI_ PAGE BLAr_ NOT FILMED

expresses the logic and dynamic behavior of the embedded system in terms of the

hardware and software parameters is constructed. The model integrates together a

"causality network" that describes the functional relationships among hardware and

software parameters, a "conditional network" which represents discrete software behaviors

due to conditional switching actions and discontinuous hardware performance due to

component failures, and a "time-transition network" that indicates the sequence in which

different software subroutines are executed and different control actions are carried out.

In the second step, the model developed in the f'u-st step is analyzed to determine how the

system can reach a certain state (desirable or undesirable). This is done by developing

"timed" fault trees for given top events (translated in terms of the state(s) of one or more

hardware/software parameters) by backtracking through the model in a systematic manner.

These "timed" fault trees take the form of a sequence of static trees relating the system

parameters at different points in time; essentially a series of snapshots of the system

evolution. All the information required to construct "timed" fault trees is implicitly

contained in the DFM model developed in Step 1. This backtracking process does not

rely on ad-hoc knowledge. In addition, the knowledge base established in Step 1 and the

algorithmic approach in backtracking can allow this process to be completely automated.

Hence, in Step 2, many different "timed" fault trees can be constructed to analyze

different top-events using a single DFM model.

It should be noted that the results of a DFM analysis are obtained in the form of "timed"

fault trees, which show how the investigated system/process states may evolve. The DFM

thus shares, in the final form of the results it provides, some of the features of fault tree

analysis. The differences, however, are that the DFM approach provides a documented

model of the system behavior and interactions, and also a framework to model and

analyze time-dependent behavior, both of which fault tree analysis itself does not provide.

The establishment of a knowledge base, and the capability for automation in this

methodology offers great advantages in analyzing complex embedded systems like the

Titan II SLV Digital Flight Control System. Once a DFM model has been developed, it

is not necessary to prepare separate ad-hoc models for each system state of interest (as

16

it is in fault treeanalysis). Also, the dynamiccapabilityof DFM is essentialin handling

the time-dependentbehaviorof the flight control system.

Sincethis paperdealswith themodelingof Titan II SLV Digital Flight Control System

usingDFM, theessentialfeaturesfor Step1(ModelConstruction)arepresented.Readers

who areinterestedin Step2 (ModelAnalysis)shouldrefer to thediscussionin Appendix

B.

4.1 Framework for Model Construction (Step I)

As explained above, the first step in DFM is to construct a model of the embedded

system. This model is an integration of a "causality network", a "conditional network",

and a "time-transition network" which represent the functional behavior, the discontinuous

behavior, and the temporal behavior of the embedded system respectively. The building

blocks of these three networks are process variable nodes, transfer boxes, transition boxes,

causality edges, and conditioning edges, and they are shown in Figure 4.1. These

building blocks and the manner in which they are assembled to form the three networks

will be discussed in Section 4.1.1 and Section 4.1.2 below.

4.1.1 Building Blocks of DFM

4.1.1.1 Process Variable Nodes

The process variable nodes represent physical and software variables that are required to

capture the essential functional and/or discrete behavior of the embedded system. The

variable represented by a process variable node is discretized into a number of states. The

reason for discretization is to simplify the description of the relations between different

variables. The choice of the states for a process variable node is often dictated by the

logic of the system. For instance, it is natural to set a state boundary at a value that acts

as a trigger point for a switching action or a value which indicates the system is

progressing towards failure. The number of states for each variable must be chosen on

17

Process Variable Node

B Conditioning Parameter Node

r_r> Transfer Box

Transition Box

iiim.._

Causality Edge

Conditioning Edge

Figure 4.1 : Building Blocks of a DFM Model

]8

the basis of careful consideration to balance the accuracy of the model with the

complexity introduced by higher numbers of variable states.

4.1.1.2 Transfer Boxes

Transfer boxes link the process variable nodes together to represent relationships between

the variables described by these nodes. The way in which these variables vary with each

other are described by decision tables associated with a transfer box. The relationship

between the input and output process variable nodes is assumed to exist in the same time

frame.

A process variable node can be linked to a transfer box via a conditioning edge or a

causality edge. A conditioning edge is used when this variable is capable of triggering

different switching actions if it takes on different states. On the other hand, a causality

edge is used when the variable only exists within the causality flow of the system. The

conditioning edge and the causality edge are used to distinguish between functional and

discrete behavior found common in embedded systems. The discrete behavior can exist

in the form of switching paths in the software or component failures in the hardware.

4.1.1.2.1 Decision Tables

A decision table is used to represent the relationships between input and output process

variable nodes for a transfer box. This table is a mapping between the combinatorial

states of transfer box inputs to the outputs. Decision tables are an extension of truth

tables in that they allow each variable to be represented by any number of states.

Decision tables have been used to model components of engineering systems [Salem,

Apostolakis, Okrent, 1977]. A system can be modeled in terms of a network of

components. Each of these components is characterized by a decision table relating the

input states to the output states. This system model, which is made up of components,

provides a database for the automatic construction of fault trees. The fault tree

19

constructionis implementedby theCAT (ComputerAutomatedTree)Code[Salem,Wu,

and Apostolakis,1979].

In a decisiontable,therewill bea columnfor eachinput variableanda columnfor each

output variableof interest. The numberof rows in the tablewill equaltheproductof the

numberof statesinto which eachinput is discretized.

In the casewhen an input processvariable node is attachedto a transfer box via a

conditioning edge,more thanone decisiontablesarenecessaryto map the inputsto the

outputs. The number of decision tables is equal to the number of statesof this

conditioning input.

The informationcontainedin thedecisiontablesis usedin building fault treesduring the

Model Analysis Step(Step2). In backtrackingtheDFM model,certainstatesof a node

canbe foundto causethetopevents.Thedecisiontableassociatedwith this nodeis then

looked up to find the completeinput setsthatcould havecausedthoseparticularstates.

4.1.1.3 Transition Boxes

Transition boxes are similar to transfer boxes in connecting process variable nodes.

Conditioning edges and causality edges are again used to distinguish between discrete and

functional behavior. Decision tables are used to describe the relationship between the

input nodes and the output nodes. However, transition boxes differ from transfer boxes

in the essential aspect that a time lag or time transition is assumed to occur between the

time when the input variable states become true and the time when the output variable

state(s) associated with the inputs is(are) reached. This time delay is labeled with the

transition box.

Transition boxes are used to model portions of an embedded system where timing is

critical, such as the execution of software subroutines. In addition, transition boxes can

also be used to model hardware time transitions, such as relay actions, which are often

20

found in both embeddedsystemsandconventionalcontrol systems.

4.1.1.4 Causality Edges

As discussed in Section 4.1.1.2 above, causality edges are used to connect process

variable nodes and transfer boxes/transition boxes. The presence of causality edges

indicates a cause-and-effect relationship, such as proportional, or inversely proportional

between two process variable nodes.

4.1.1.5 Conditioning Edges

Unlike causality edges, conditioning edges are used to indicate discrete behavior in the

system. They link conditioning parameter nodes to transfer boxes, indicating the

possibility of selecting different decision tables in a transfer box. For example, depending

on certain software flag, the gains in a controller can be changed, thus altering the

functional relationship between the control inputs and control outputs.

4.1.2 Model Assembly

To develop a model for an embedded system, physical parameters and software variables

that capture the essential causal and temporal behavior of the system are first identified

as functional process variable nodes. These nodes are then linked together by transfer

boxes and transition boxes via causality edges to form an integrated "causality" and "time-

transition" network. Discrete behaviors such as component failures and logic switching

actions are then identified and represented as nodes linking to transfer/transition boxes via

conditioning edges. This "conditioning network" is then integrated to the "causality" and

"time-transition" network. The parameters represented by the process variable nodes are

discretized into meaningful states dictated by the logic of the system, such as the

possibility of triggering switching actions or leading to abnormal behavior. Decision

tables are constructed to relate these states together. The completed DFM model then

reflects the essential causal, temporal, and logic behavior of the embedded system. The

21

constructionof a DFM modelis going to be illustratedusingtheTitan II SLV DFCS in

Section 5.

22

5. Modeling the Titan II SLV DFCS with DFM

A DFM model is developed for the Titan II SLV DFCS for Stage I flight. In constructing

the DFM model, a number of simplifying assumptions are made.

1) The Inertial Measurement Unit (IMU) is assumed to be aligned properly prior to

liftoff so that the platform will not drift during flight.

2) Only the first and last Real-Time-Interrupts (RTI) within a 40 ms time period are

represented. This can be justified because readings from sensors and outputs to

actuators only occur during these two interrupts. The interrupts in between,

occurring every 5 ms, are dedicated to telemetry handling and are not relevant to

flight control.

3) The Major Cycle is represented as one big chunk of calculation at the end of the

1 s period, instead of using up little time-slots left over by the Minor Cycle

calculations. This can also be justified because the Minor Cycle calculations only

use the Major Cycle results after they are updated.

The hardware and software parameters essential for capturing the behavior of this

embedded system are listed in Table 5.1 and Table 5.11 respectively. For example, the

hardware parameters are identified by first recognizing the fact that the function of the

embedded system is to stabilize the vehicle during flight, hence, Bf, the body axes of the

vehicle (roll axis, pitch axis, and yaw axis) is an essential parameter. The body axes can

be varied by the deflection of the thrust chambers, so 0e, OR, 0v, the deflections of the

engines for pitch correction, roll correction, and yaw correction respectively are other

important parameters. The degree in body axes change is affected by the thrust F, the

mass M, the moment of inertia I, and the location of the center of mass CM, and these

parameters are added to the list. As the command to engines deflection comes from

measuring the gimbal angles tx, [3, 7, YR, the pitch rate PR, the yaw rate YR, and the

acceleration along the IMU axes a_m, a_m, a_m, these variables are also included in the list.

Finally, the IMU measures the gimbal angle by comparing the present body axes and the

body axes at go inertial Bi, so the variable B_ is also present in the list.

23

aunl

a

Bo

Bf

Bi

CM

F

I

M

PR

YR

O_

?R

0p

0a

0v

Acceleration along the accelerometer um-axis

Acceleratior, along the accelerometer vm-axis

Acceleration along the accelerometer wm-axis

Vector acceleration of the vehicle

Body axes of the vehicle at the beginning of a 40 msec cycle

Body axes of the vehicle at the end of a 40 msec cycle

Body axes of the vehicle at go inertial

Center of mass of the vehicle

Thrust

Moment of inertia about the center of mass

Mass of the vehicle

Pitch Rate

Yaw Rate

Platform gimbal angle

Middle gimbal angle

Outer redundant gimbal angle

Gamma gimbal angle

Angle of deflection of the engines for pitch correction

Angle of deflection of the engines for roll correction

Angle of deflection of the engines for yaw correction

Table 5.1 : Hardware Parameters of the Titan II DFM Model

24

D2VUP

D2VVP

D2VWAP

D5NUC

D5NVC

D5NWC

D7VU

D7VV

D7VWA

D8UXL

D8UEL

H7CH8

H7CH9

H7CH10

H7CH11

H7CH12

H7CH13

H7CH16

I2CHER

R2OLER

Velocity Changein theLast 40 msecin LaunchCo-ordinates

Velocity Changein theLast 40 msecin LaunchCo-ordinates

Velocity Changein theLast 40 msecin LaunchCo-ordinates

Numberof AccelerometerCountsfor the uc Accelerometer

Numberof AccelerometerCountsfor thevc Accelerometer

Numberof AccelerometerCountsfor the wc Accelerometer

Velocity Changein theLast Secondin LaunchCo-ordinates

Velocity Changein theLast Secondin LaunchCo-ordinates

Velocity Changein theLast Secondin LaunchCo-ordinates

NumericalDerivativeof theCommandedRoll Axis inGimbalCo-ordinates

NumericalDerivativeof the CommandedPitch Axis in Gimbal
Co-ordinates

K sin(or-120°)

K sin(oc-60°)

K sin([_-120°)

K sin(_-60°)

K sin(_/R-120°)

K sin(y_-60°)

InnerGammaResolverInput

Pitch Attitude Error

Roll Attitude Error

Table 5.1I: SoftwareParametersfor theTitan II Model (1/3)

25

UET

UETC

UXI

UXIC

UZEI

U7EDM

U7XDM

U8ETA

U8XIA

VX

VY

VZ

W2DA 11

W2DA21

W2DA31

W2P

W2R

W2Y

W2PEI0

W2REI0

W2YEI0

GuidanceDesiredReferencePitch Axis in EarthCo-ordinates

GuidanceDesiredPitch Axis in Gimbal Co-ordinates

GuidanceDesiredRoll Axis in EarthCo-ordinates

DesiredRoll Axis in Gimbal Co-ordinates

DesiredYaw Axis at Initiation of StageI Pitchover

CommandedPitch Axis in Gimbal Co-ordinates

CommandedRoll Axis in Gimbal Co-ordinates

CommandedPitch Axis in Gimbal Co-ordinates

CommandedRoll Axis in Gimbal Co-ordinates

Vehicle Velocity in EarthCo-ordinates

Vehicle Velocity in EarthCo-ordinates

Vehicle Velocity in EarthCo-ordinates

D/A Output

D/A Output

D/A Output

ForwardLoop Pitch Signal

ForwardLoop Roll Signal

ForwardLoop Yaw Signal

Pitch Attitude Error Input Term

Roll Attitude Error Input Term

Yaw Attitude Error Input Term

Table 5.11: SoftwareParametersfor the Titan II Model (2/3)

26

W2PE00

W2RE00

W2YE00

W2PLI0

W2YLI0

W7PIlL

W7YIIL

X

Y

Y2AWER

Y2DDB

Z

Z2DDB

LatestPitch AttitudeError OutputTerm

LatestRoll Attitude Error OutputTerm

LatestYaw Attitude Error OutputTerm

PitchLateral AccelerationInputTerm

Yaw LateralAccelerationInput Term

Pitch Rate1 Gyro Input

Yaw Rate1 Gyro Input

Vehicle Positionin EarthCo-ordinates

VehiclePositionin EarthCo-ordinates

Yaw Attitude Error

Yaw PlaneLateralAcceleration

Vehicle Positionin EarthCo-ordinates

Pitch PlaneLateralAcceleration

Table 5.11: SoftwareParametersfor the Titan II Model (3/3)

27

The DFM modelof the embeddedsystemis shownin Figure5.1. Due to thelimitation

in space,the representationof theflight control softwareis expandedin all the detail in

Figure 5.2.

In Figure 5.1, transferbox A modelstheIMU, whereB_andBf are compared to generate

the gimbal angle measurements or, 13, y, and YR. Transfer box D represents the gyros

which measure the pitch rate PR and yaw rate YR, while transfer box F shows the

accelerometers which provide measurements a_m, a_m, a_,,. The sensor inputs or, [3, T, YR,

PR, YR, a_m, a_,,, and a_m are used by the flight control software to calculate the thruster

deflections 0p, 0k, and 0v. Finally, transfer box C represents the rocket itself in which

the body axes and the current acceleration depends on F, M, I, CM, 0p, 0 R, and 0v.

Figure 5.2 is constructed based on the control flow in the flight control software. The

transition boxes represent software modules, and the nodes represent essential parameters

in the software code. For example, RTI-0 is the software module for the first Real-Time-

Interrupt. This module reads in the gimbal angle measurements tx, 13, 7, and YR, and

represents them as the variables H7CH8, H7CH9, H7CH 10, H7CH 11, H7CH 12, H7CH 13,

and H7CH16. Similarly, the measurements a_m, a_m, and awm are read in as accelerometer

counts and are represented as D5NUC, D5NVC, and D5NWC. Finally, the pitch rate and

yaw rate are represented as W7PIIL, and W7YIIL. This figure shows that the sensor

measurements are read in by RTI-0. The accelerometer counts are first converted to

accelerations by the software module BLOCK 51. The next subroutine executed, BLOCK

50, uses the gimbal angle measurements to determine the lateral acceleration of the

vehicle and its current body axes. Next, the desirable body axes, which is updated every

second in the major cycle, is compared with the current axes to find the attitude errors.

The final outputs produced by BLOCK 50 are the attitude errors (roll error, pitch error,

and yaw error), and the lateral accelerations (pitch acceleration and yaw acceleration).

These variables, together with the pitch rate and yaw rate information, are used by the

subroutine FIG 10 to calculate the flight control inputs. These inputs are used in the

module FIG 11 to calculate the forward loop signals. The control equations implemented

in FIG 11 are 4th order equations, so previous flight control inputs are read in and

28

lJ
Flight

Control
Software

Figure 5.1 ' DFM Model of the Titan II Flight Control System

29

%

/ \'
\

/

RTI-0

Figure 5.1

m

H9 }

[H7C

r

[12CI

_)B}

ii

/1 \

Figure 5.2 • DFM Model of the Flight Control Software (1/3)

3o

every 25 times

A
Figure 5.2 • DFM Model of the Flight Control Software (2/3)

31

Figure 5.1

Figure 5.2 • DFM Model of the Flight Control Software (3/3)

32

updated. The forward loop signals are then converted to D/A outputs in the subroutine

FIG 33. The software then waits until the RTI-7 executes to issue the outputs to the

actuators. This completes one minor cycle. After executing 25 similar cycles, the time

between the completion of FIG 33 and the execution of RTI-7 will be used for major

calculations, hence the branching after FIG 33.

Note that most of the process parameter nodes are linked to transfer/transition boxes via

causality edges. A conditioning edge links the node N8L to the transition box BLOCK

4. N8L is the time kept by the software, and the variable dictates the type of maneuvers

to be executed. The execution of different maneuvers causes a discrete jump in the

software in the form of using different equations to calculate the desirable body axes.

After linking up the parameters by the transfer boxes and transition boxes, the next step

is to construct decision tables to represent the relationships between the parameters.

Combinatorial explosion is encountered in the construction of decision tables for the

software subroutines. One of the subroutines will be used to illustrate the problem. In

the subroutine BLOCK 1, the variables X, Y, Z, VX, VY, VZ, D7VU, D7VV, and

D7VWA are used to calculate new values for X, Y, Z, VX, VY, and VZ for the next

second. The variables (X,Y,Z) represent the location of the rocket, (VX,VY,VZ)

represent the velocity of the rocket, and (D7VU,D7VV,D7VWA) represents the

acceleration of the rocket due to thrust alone. X, Y, and Z are each discretized into 5

states, representing a large negative deviation, a moderate deviation, a distance close to

0, a moderate positive deviation, and a large positive deviation. VX, VY, and VZ are

also each discretized into 5 states representing a large negative velocity, a moderate

velocity, a velocity close to 0, a moderate positive velocity, and a large positive velocity.

Similarly, D7VU, D7VV, and D7VWA are each discretized into 5 states representing a

large negative acceleration, a moderate negative acceleration, an acceleration close to 0,

a moderate positive acceleration, and a large positive acceleration.

The equations implemented by this software module are listed in Table 5.III.

33

,

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

DVW

FI31

FI32

FI33

RG11

RG21

RG31

RG12

RG22

RG32

RG13

RG23

RG33

DVSX

DVSY

DVSZ

DVSQ

X

Y

Z

,m

CG22*FI13 +

CG23*FI13 +

CG21*FI11 +

CG22*FI11 +

CG23*FI11 +

RG2 l*RG32 -

RG31 *RG 12 -

D7VWA

FI12*FI23 - FI13*FI22

FI13*FI21 - FI11"FI23

FI11"FI22 - FI12*FI21

CG21*FI13 + CG31*FI23 + CG11"FI33

CG32*FI23 + CG12*FI33

CG33*FI23 + CG13*FI33

CG31*FI21 + CG1 l*FI31

CG32*FI21 + CG12*FI31

CG33*FI21 + CG13*FI31

RG3 l*RG22

RG 11 *RG32

RG1 l*RG22 - RG21*RG12

RG12*D7VU + RG13*D7VV + RG11*DVW

RG22*D7VU + RG23*D7VV + RG21*DVW

RG32*D7VU + RG33*D7VV + RG31*DVW

DVSX*DVSX + DVSY+DVSY + DVSZ*DVSZ

X + VX + 1/2 * (DVSX + DVGX)

Y + VY + 1/2 * (DVSY + DVGY)

Z + VZ + 1/2 * (DVSZ + DVGZ)

Table 5.III • The Subroutine BLOCK 1 (1/2)

34

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

RSQ

R

U

UX

UY

UZ

AG

DVGJ

DVGZE

RE1

RE2

RE3

DVGX

DVGY

DVGZ

VX

VY

VZ

= X*X + Y*Y + Z*Z

= SQRT(RSQ)

= 1/R

= U*X

= U*Y

= U*Z

= CGMN*U*U

= AG*CJG5*AG

= AG + DVGJ + AG*UZ*CJAG*AG*UZ

= DVGX

= DVGY

= DVGZ

= DVGZE*UX

= DVGZE*UY

= (DVGJ + DVGJ + DVGZE)*UZ

= VX + DVSX + 1/2 * (DVGX + RE1)

= VY + DVSY + 1/2 * (DVGY + RE2)

= VZ + DVSZ + 1/2 * (DVGZ + RE3)

Table5.Ill • The SubroutineBLOCK 1 (2/2)

35

Equation1calculatestheaccelerationaftercompensationfor the drift of theIMU. Since

we assumeno drift, the two accelerationsareequal. As D7VU, D7VV, andDVW are

not in the sameco-ordinate systemas X, Y, Z, VX, VY, and VZ, equations2-16

transform the accelerationsinto the sameco-ordinatesystemand representthem as

DVSX, DVSY, andDVSZ. Equation17doesnothingmorethancalculatingthe square

of the magnitudeof theacceleration.Equation18-20updatethe positionX, Y, Z using

the velocities VX, VY, and VZ, and the accelerationsDVSX, DVSY, DVSZ, DVGX,

DVGY, andDVGZ. The DVS's areaccelerationsdueto thrustalone,while the DVG's

are accelerationsdue to gravitationalpull. The total accelerationis a sum of the two.

Equations21-35 updatethe accelerationsdue to gravitationalpull basedon the current

position X, Y, and Z. Theseequationsalso storesthe previousaccelerationsdue to

gravity as RE1, RE2, and RE3. Finally, equations36-38 updatethe velocitiesof the

vehicle using the accelerationsdue to thrust and the accelerationsdueto gravity. The

latter is calculatedasan averageof thecurrentandthepreviousvalue.

To completethe entriesin the decisiontable,we needto samplecombinationsof these

9 input variables. In our model,all these9 input variablesareeachdiscretizedinto 5

different states. This meansthat we haveto sampleat least59 times. Hence,we are

running into the combinatorialproblemencounteredin moduletesting. In addition,the

decision table producedwill be huge, consistingof 59 rows. It will be very time

consumingto look upmanytablesof this sizeduring themodelanalysisstep. A possible

solution to this problemis suggestedin thenext section.

36

6. A Solution to the Problem of Combinatorial Explosion

The approach to solving the combinatorial explosion problem in the decision table

construction is based on the intention to bypass the construction step. It can be observed

that the decision tables constructed in Step 1 are only used for providing information for

Step 2 (Model Analysis). In the analysis, the causality and the temporal flow of the DFM

model is backtracked to identify causes for certain top-events. The decision tables

provide intermediate information on the backtracking step, namely in finding the

parameter states in-between the top events and their causes. If we are able to find these

intermediate causes by some means other than looking up the decision tables, we can

avoid the combinatorial explosion problem altogether.

For the Titan II flight control software, its subroutines implement equations with distinct

physical meaning. The equations either represent equations of motion or control laws.

Hence, we can take advantage of this fact and try to solve the equations implemented in

the subroutines in reverse, instead of constructing and later looking up the decision tables

in the backtracking process.

The approach presented here intends to solve the intermediate causes on-line during the

analysis. For instance, a particular subroutine is encountered in backtracking the DFM

model and certain outputs from this subroutine are found to eventually produce the top

event. The next step is to find the combinations of inputs that produce those outputs via

this particular subroutine. Instead of looking up the decision tables constructed previously

for this subroutine in Step 1, we can try to solve the equations implemented in the

subroutine.

For example, the analysts are interested in finding out why the thrust chambers have

deflected 2 °, 2.5 °, and 1.5 ° respectively for roll correction, pitch correction, and yaw

correction. This condition, whose causes are to be found, is represented as the top event

in the fault tree shown in Figure 6.1. In the DFM model in Figure 5.1 and Figure 5.2,

we find that the condition (0p, OR, 0v) = (2 °, 2.5 °, 1.5 °) is backtracked through the transfer

37

Op =2 ° OR =2.5 ° ey = 1.5 °

W2DA11=52

[
W2DA21 = 65

1
W2DA31 =39

]

-<_

I t
W2P = 51.7 W2R = -12.8 W2Y = 51.8

Figure 6.1 • Fault Tree for (0r, OR, 0y) = (2 °, 2.5 °, 1.5 °)

38

box B. This condition is found to be causedby W2DA11 = 52, W2DA21 = 65, and

W2DA31 = 39. Next, we backtrackthe delaytime transitionwhich waits for RTI-7 to

execute. The parametersW2DAll, W2DA21, and W2DA31 retain their values.

Continuing the backtrackingprocess,the DFM model showsthat W2DA11, W2DA21,

and W2DA31 arecalculatedby the subroutineFIG 33 with the input variablesW2P,

W2R, andW2Y. We needto find whatvaluesof theseinput variablesproducetheoutput

values of interest in order to enter the gate in the next level in the fault tree. The

equationsimplementedin this softwaremoduleFIG 33 aresolved,and the input values

are found to beW2P = 51.7,W2R= -12.8,andW2Y = 51.8. This information is, then,

enteredinto the fault tree. The backtrackingprocessis continuedand the equation

solving procedureis repeated,if necessary,for the next subroutine. The approachfor

solving the equationsis basedon the Newton-Raphsonmethodfor solving a systemof

non-linearequations.An overviewof theNewton-Raphsonmethodin providedin Section

6.1,andthediscussionof theproposedapproachispresentedin Section6.2. An example

to demonstratethis approachis providedin Section6.3.

6.1 The Newton-Raphson Method

The Newton-Raphson Method [Johnson and Riess, 1982], [Maron, 1987], [Fr6berg, 1985]

is a well-known approach in numerical analysis for solving a system of non-linear

equations. The Newton-Raphson Method can be classified as a fixed-point iteration in

which successive guesses are calculated based on previous results to approximate the

exact solution. The iteration procedure is terminated when the error becomes less than

the predetermined tolerance. The convergence of this solution method is second order,

which means that the error in the current iteration is proportional to the square of the

error in the previous iteration.

Given a system of n functions

F(x) = (fl(x), f2(x) f,(x))r

where x = (x l, x2, ..., xn),

the Newton-Raphson Method helps us to find the exact solution a where F(a) = 0. The

39

Newton-RaphsonMethod provides a formula for making successiveiteration. This

formula is

Xk+ ! ---_

Xk+ 1 "-

X k ---_

J(Xk) "1 =

J =

Xk - J(Xk) -I F(Xk), where

(k+ 1)th iteration

k t_ iteration

inverse of the Jacobian Matrix calculated using the k th iteration

Jacobian Matrix in which the element in the ith row and jth column is

defined as dfi/dx j

Note that in the iteration, we need to supply an initial guess. This initial guess is crucial

to the convergence. If this guess is sufficiently close to the exact solution, the iteration

converges rapidly towards the exact solution. On the other hand, if the initial guess is

bad, the iteration diverges rapidly. Divergence can also occur if there is no solution to

the particular system of equations.

6.2 Solution Solving Approach

The proposed approach is based on solving the equations implemented by a subroutine

in reverse during the backtracking analysis. Owing to the fact that the number of

unknowns does not necessarily equal the number of equations, the Newton-Raphson

Method cannot be applied directly. It has to be adapted to handle the situations in which

the number of unknowns is equal to, less than, and greater than the number of equations.

These three situations will each be discussed below.

It should be observed that while solving the equations, the analyst must be aware of the

switching actions that may exist in the subroutine. This information is identified in Step

1 and is represented in the DFM model as a process variable node linking to the relevant

transition box via a conditioning edge. If switching actions arises, the appropriate

equations, i.e., the equations relevant to the range of the current iteration, have to be

solved.

40

Supposea subroutineconsistsof n input variablesx_,x2..... x, and m output variables Yt,

Y2..... Ym" The physical equations implemented by this subroutine are:

Yl = gl(xl, x2..... Xn)

Y2 = g2(Xl, X2..... Xn)

Ym = gin(Xl, X2..... Xn)

In the backtracking analysis, we discover that the outputs y_ = b_, Y2 = b2 Ym = bm

from this subroutine will eventually lead to the top event. The next step is to find out

the combinations of input values which produce this set of output values.

We first express the information in terms of m functions:

fl(xl Xn) =

f2(x_ X.) =

gl(Xl x.) - bl

g2(x l, "", x.) - b 2

fro(Xl Xn) = gin(xl x.) - b m

The objective is then to determine the values a t, a2..... an such that

fl(al, a2, ..., an) = 0

f2(aj, a2..... a,) = 0

fro(al, a2, ..., am) = 0

However, the Newton-Raphson Method cannot be applied directly as n does not

41

necessarilyequalm. Threedifferent situationsmay arisewhenm = n, m > n, and m <

n.

Case 1 m = n

The Newton-Raphson Method can be applied directly. As explained previously, solutions

can be found by using a "good" initial guess for the solution. However, if diverging

iterations are produced with this method, it is possible that no solution exist or the initial

guess is too far from the exact solution. Further investigations have to be performed to

identify which is really the situation encountered.

Case 2 m > n

In this case, the output variables y_, Y2..... Ym are not independent. We can choose

amongst them the n independent variables. Without loss of generality, let these be Yl, Y2,

•.-, Yn. We can then solve the system

fl = 0

f_ = 0

using Newton-Raphson Method, where

fi(XI' X2 Xn) = gi(Xl' X2 ' x,) - bi

i=1,2 n

The observation regarding diverging iterations also applies in this situation.

Case 3 m < n

The most interesting case occur when m < n. The approach is to assume arbitrary values

42

for (n-m) of the variablesandthensolvefor theremainingm variables. We then repeat

this processwith anothersetof arbitraryvaluesfor the(n-m) variables.

Supposewe have the subroutinewith inputs xI..... Xn,and outputsy_..... Ym,and the

subroutineimplementstheequations

Yl = gl(xl..... xn)

Ym = gm(Xl..... Xn)

Without lossof generality,we first assumearbitraryvaluesfor the last (n-m) variables:

Xm+ 1 _ km+ I

Xn = lq

We then solve the system

f_ = 0 i=1,2 m

using the Newton-Raphson Method, where

fi(Xl Xm) = gi(xl Xm, km÷l..... 1%) - b i

i=1,2 m

The detailed procedure for implementing this approach will be demonstrated in Section

6.3.

In case a solution does not exist for the assumed arbitrary values

43

Xm+ I = km+ I

X. = kn

the iterations produced in the Newton-Raphson Method will diverge no matter what the

initial guesses are.

6.3 Example

We will demonstrate this approach using the subroutine BLOCK 1 in the Titan II flight

control software. This subroutine is chosen because the problem of combinatorial

explosion is encountered in constructing its associated decision table, and the equations

implemented in this software module have been discussed in Section 5. We will see how

solving the equations in the software can take the place of looking up big, previously

constructed decision tables in the backtracking analysis. This approach is implemented

by a software code written in C, and is found to be successful.

The subroutine BLOCK 1 has been presented in Section 5. This subroutine updates the

position and velocity of the rocket by using the previous known position and velocity, and

the current acceleration of the rocket. The input variables are X, Y, Z, VX, VY, VZ,

D7VU, D7VV, and D7VWA. The output variables are X, Y, Z, VX, VY, and VZ.

Suppose in our backtracking analysis, we find that the outputs

X = 1.001 x 107

Y = 1.001 X 10 7

Z = 2.002 X 10 7

VX = -9990

VY = 9990

VZ = 19980

44

will eventually producedthe top event. This information is found by backtrackingthe

DFM model asseenin Section6.1. We needto find theinputsin order to go down the

next level in the fault tree.

As n-m = 3, we first needto assumearbitrary valuesfor threeof the input variables.

Thesearechosento be D7VU, D7VV, and D7VWA. The arbitraryvaluesare:

D7VU = -100 or 100

D7VV = -100or 100

D7VWA= -100 or 100

The C programtriesthe eight possiblecombinationsof D7VU, D7VV, andD7VWA to

solvefor X, Y, Z, VX, VY, VZ. The codewritten to implementtheapproachis shown

in Figure 6.2. It usesthe initial guesses

XO=l.O01x 10 7

Y0= 1.001 x 107

Z0=2.002 x 10 7

VX0=--9990

VY0=9990

VZ0= 19980

and the results are shown in Figure 6.3. It can be seen that convergence is attained in

only two iterations! This is due to the fact that the initial guesses are very close to the

exact solution. As a comparison, the program is executed using another set of initial

guesses.

X0=-2.1 x 107

Y0=0

Z0=0

VXO=0

VYO=-0

VZ0=0

45

Theresultsproducedareshownin Figure6.4. This time, convergenceis attainedin three

iterations,which is still very fast indeed.

The results showsthat solving the equationsimplementedin the softwareis a feasible

approach to replace the need to construct and look up the decision tables in the

backtrackinganalysis. As seenin Section5, combinatorialexplosionin samplingcanbe

encounteredduring the decisiontable constructionstep. It shouldbe observedthat the

particular subroutine to be solved and the associatedvalues are indicated by the

backtracking of the DFM model. The equationsimplementedin that subroutineare

solvedto completethe entriesnext level downin thefault tree.

46

#include<stdio.h>
#include<math.h>

#defineMAXITERATION (1000)
#defineTOLERANCE (1E-03)
#defineCGMN (-0.14076458E+17)
#defineCJAG (0.25258642E-03)
#defineCJG5 (-0.50517284E-04)

*/

*/

*/

*/

#define NUMBER_IN (9)

#define NUMBER_OUT (6)

#define NUMBER_SAM (3)

#define SAMPLE_POINT (5)

#define h (1)

/* Number of input variables */

/* Number of output variables */

/* Number of input variables to be sampled */

/* Maximum number of sampling points */

/* The step use to calculate Jacobian Matrix */

void sample(int,int*,int*,double[NUMBER_SAM][SAMPLE_POINT],

double*,double*);

int newton(double*, double*);

void fn(double*, double*, double*);

void jm(double jf[NUMBER_OUT][NUMBER_OUT],

double*, double*);

void check(double*);

Figure 6.2 • Software Code for Solving Equations (1/14)

47

/* main.c

/* Solving for the input variables for BLOCK 1

/* with a checking algorithm
/* Michael Yau 4-12-1993

]4 444_4444444_4444444_44_c4444444444444_c_4444

#include "e:\bccknewton_header.h"

main()
{

int i, j, count[NUMBER_SAM];

int sam_pnt[NUMBER_SAM];

double x[NUMBER_IN], y[NUMBER_OUT];

double temp, s[NUMBER_IN][SAMPLE_POINT];

FILE *sample_in, *data_in;

*/

*/

*/

*/

*/

*/

/* Keep track of the input and output variables */

/* */

/* x[0] = x0 y[0] = xl */

/* x[1] = y0 y[1] = yl */

/* x[2] = z0 y[2] = zl */

/* x[3] = vx0 y[3] = vxl */

/* x[4] = vy0 y[4] = vyl */

/* x[5] = vz0 y[5] = vzl */

/* x[6] = d7vu s[0] = d7vu */

/* x[7] = d7vv s[1] = d7vv */

/* x[8] = d7vwz s[2] = d7vwz */
/. */

[4 444444444444_c4444444_4_c4444444_444_44444444_4 4[

/* Get the values of the output variables from input.dat */

data_in = fopen("input.dat","r");

/* Get the values in the order x 1,y 1,z 1,vx 1,vy 1,vz 1 */

while (fscanf(data_in,"%lf",&y[0]) == 1){

Figure 6.2 : Software Code for Solving Equations (2/14)

48

for (i = 1; i < NUMBER_OUT; i++){

fscanf(data_in,"%lf",&temp);

y[i] = temp;

}

printfC_**************************************Ln_");

printff"For the output variables:_");

for (i = 0; i < NUMBER_OUT; i++){

printff"y[%2d] - %10.3e_",i,y[i]);

J
/* Read in the sampling points */

sample_in = fopen("sampnt.dat","r");

for (i = 0; i < NUMBER_SAM; i++){

fscanf(sample_in,"%d",&sam_pnt[i]);

for (j = 0; j < sam_pnt[i]; j++){

fscanf(sample_in,"%lf",&temp);

s[i][j] = temp;

}
}
fclose(sample_in);

/* Start sampling */

sample(0, count, sam_pnt, s, x, y);

}
fclose(data_in);

return NULL;

Figure 6.2 : Software Code for Solving Equations (3/14)

49

#include "e:\bcc_ewtonkheader.h"

void sample(intlevel,int count[NUMBER_SAM],intsam_pnt[NUMBER_SAM],
double s[NUMBER_SAM][SAMPLE_POINT],
doublex[NUMBER_IN], doubley[NUMBER_OUT])

{
int i, j, newton_return;

for (count[level]=0; count[level]<sam_pnt[level]; count[level]++){

if (level < NUMBER_SAM-1)

sample(level+l, count, sam_pnt, s, x, y);
else

printf("_*****************************Xn");

printf("_ For the sample points:Xn_a");

for (i = NUMBER_OUT; i < NUMBER_IN; i++){

j = count[i-NUMBER_OUT];

x[i] = s[i-NUMBER_OUT] [j];

printf(" x[%2d] = % 10.3e_,,i,x[i]);

}
newton_return = newton(x, y);

if (newton_return == 0)

{
printf("XnLn

pointsXn");

}
else

{

No solution for this set of sample

printf("_Xn The solution is:XnXn");

for(i = 0; i < NUMBER_IN; i++){

printf(" x[%2d] = %10.3eXn",i,x[i]);

}
check(x);

Figure 6.2 : Software Code for Solving Equations (4/14)

50

/. **************************

/* newton.c

/* Michael Yau 4-12-1993

*/

*/

*/

*/

#include "e:\bccknewtonkheader.h"

/* *** Subroutine to implement Newton's Method *** */

int newton(double*x, double*y)

{
double f/NUMBER_OUT/, jf[NUMBER_OUT][NUMBER_OUT];

double dx[NUMBER_OUT], m[NUMBER_OUT][NUMBER_OUT];

double previous_error, error, ftemp, jftemp, jfmax;

int count, i, j, k, 1, imax;

double find_error(double*);

/* ****************_************* */

/* initi_ize the solution vector */

/, ****************************** */

x[0] = -2.1e+07;

x/l/= 0;

x[2] = 0;

x[3] = 0;

x[4] = 0;

x[5] = 0;

printf("kn%4s %9s %9s %9s %9s %9s %9s %9s_n",

"N","x0","y0","z0","vx0","vy0","vz0","Error");

/* Start iteration */

for (count = 0; count < MAXITERATION; count++){

Figure 6.2 : Software Code for Solving Equations (5/14)

51

/* Print out the guess */

printf("_a%4d",count);

for (i = 0; i < NUMBER_OUT; i++){

printf(" %9.2e",x[i]);

}

/* Evaluate f and reverse the sign */

fn(f, x, y);

/* Find the error */

error = find_error(f);

printf(" %9.2e",error);

if (error < TOLERANCE)

return 1;

if (count > 0)

if (error > previous_error)

return 0;

previous_error = error;

/* Calculate the Jacobian Matrix */

jm(jf, x, y);

/* Calculate the inverse of the Jacobian Matrix */

for(k = 0; k < NUMBER_OUT; k++){

/* Row Interchange */

imax = k;

jfmax = fabs(jf[k][k]);

for(1 = k+l; 1 < NUMBER_OUT; 1++){

if (fabs(jf[1][k]) > jfmax)

I
jfmax = fabs(jf[l][k]);

imax = 1;

}

Figure 6.2 : Software Code for Solving Equations (6/14)

52

if(imax !=k)
{

for(1 = k; 1 < NUMBER_OUT; 1++){

jftemp = jf[k][1];

jf[k][l] = jf[imax][l];

jf[imax][l] = jftemp;

}
ftemp = f[k];

f[k] = f[imax];

f[imax] - ftemp;

}

/* Forward Elimination */

for(i = k+l; i < NUMBER_OUT; i++){

m[i][k] = jf[i][k] / jf[k][k];

f[i] -= m[i][k] * f[k];

for(j = k+l; j < NUMBER_OUT; j++){

jf[i][j] -= m[i][k] * jf[k][j];

J

/* Back Substitution */

dx[NUMBER_OUT- 1] = f[NUMBER_OUT- 1] /

j f[NUMB ER_OUT- 11 [NUMBER_OUT- 1];

for(i = NUMBER_OUT-2; i >= 0; i-){

dx[i] = 0.0;

for(j = i+l; j < NUMBER_OUT; j++){

dx[i] += jf[i][j] * dx[j];

)
dx[i] = (f[i] - dx[i]) /jf[i][i];

Figure 6.2 : Software Code for Solving Equations (7/14)

53

/* Calculate the next guesses */

for (i = 0; i < NUMBER_OUT; i++){

x[i] += dx[i];

}
}
return 1 ;

/* *** End of Subroutine newton *** */

/* *** Subroutine to find the error *** */

double find_error(double* f)

{
double error=0;

int i;

for (i = 0; i < NUMBER_OUT; i++){

error += f[i]*f[i];

}
return sqrt(error);

/* *** End of Subroutine find_error *** */

Figure 6.2 : Software Code for Solving Equations (8/14)

54

/* *** _/

/* function.c */

/* This file contains the function definitions for */

/* the subroutine */

/* Michael Yau 4-12-1993 */

#include "e:\bcc_ewtonkheader.h"

/* *** Subroutine to evaluate the function *** */

void fn(double* f, double* x, double* y)

{
int i;

double

double

double

double

double

double

CG11, CG12, CG13, CG21, CG22, CG23, CG31, CG32, CG33;

D7VU, D7VV, D7VWA, DVW, DVSQ;

X, Y, Z, VX, VY, VZ, DVSX, DVSY, DVSZ;

DVGX, DVGY, DVGZ, RE1, RE2, RE3;

Fill, FI12, FI13, FI21, FI22, FI23, FI31, FI32, FI33;

RGll, RG12, RG13, RG21, RG22, RG23, RG31, RG32, RG33;

double p[3];

void dvg(double*, double*, double*, double*);

X

Y

Z

VX

VY

VZ

D7VU

D7VV

D7VWA

FIll = 1;

FI12 = 0;

FI13 = 0;

FI21 = 0;

FI22 = 1;

FI23 = 0;

= x[0];

= x/l/;

= x[2];

= x[3];

= x[4];

= x[5l;

= x[6];

= x[7];

= x[8];

Figure 6.2 • Software Code for Solving Equations (9/14)

55

CG11 = 0.14379912;
CG12 = -0.86644896;
CG13= 0.47810879;
CG21= 0.09714823;
CG22= 0.49315612;
CG23= 0.86449942;
CG31= -0.98482691;
CG32= -0.07786683;
CG33= 0.15508940;
DVW = D7VWA;
FI31 = FI12*FI23 - FI22*FI13;
FI32 = FI13*FI21 - FI23*FI11;
FI33 = FI11"FI22 - FI21*FI12;
RGll = CG21*FI13+ CG31*FI23+ CGIl*FI33;
RG21= CG22*FI13+ CG32*FI23 + CG12*FI33;
RG31= CG23*FI13 + CG33*FI23+ CG13*FI33;
RG12= CG21*FI11 + CG31*FI21+ CGll*FI31;
RG22= CG22*FI11 + CG32*FI21+ CG12*FI31;
RG32= CG23*FI11 + CG33*FI21+ CG13*FI31;
RG13= RG21*RG32- RG22*RG31;
RG23= RG31*RG12- RG32*RGll;
RG33= RG1l*RG22 - RG12*RG21;
DVSX = RG12*D7VU + RG13*D7VV + RG11*DVW;
DVSY = RG22*D7VU + RG23*D7VV + RG21*DVW;
DVSZ = RG32*D7VU + RG33*D7VV + RG31*DVW;
DVSQ = DVSX*DVSX + DVSY*DVSY + DVSZ*DVSZ;
p[0] = X;

p[l] = Y;

p[2] = Z;

dvg(&DVGX, &DVGY, &DVGZ, p);

X = X + VX + 0.5*(DVSX + DVGX);

Y = Y + VY + 0.5*(DVSY + DVGY);

Z = Z + VZ + 0.5*(DVSZ + DVGZ);

RE1 = DVGX;

RE2 = DVGY;

RE3 = DVGZ;

p[0] = X;

p[1] = Y;

p[2] = Z;

dvg(&DVGX, &DVGY, &DVGZ, p);

Figure 6.2 : Software Code for Solving Equations (10/14)

56

VX =
VY =
VZ =
f[0] =
f[1] =

f[2] =

f[31 =

f[4] =

f[5] =
for(i

VX + DVSX + 0.5*(DVGX + RE1);

VY + DVSY + 0.5*(DVGY + RE2);

VZ + DVSZ + 0.5*(DVGZ + RE3);

x - y[0];
Y- y[ll;

Z- y[21;

VX - y[3];

VY- y[4];

vz- y[5];
= 0; i < NUMBER_OUT; i++){

f[i] = -f[i];

/* *** End of Subroutine fn *** */

/* *** Subroutine to find dvgx, dvgy, and dvgz *** */

void dvg(double *dvgx, double *dvgy, double *dvgz,

double p[3])

{
double r, ux, uy, uz, ag, dvgj, dvgze;

r = sqrt((p[0l*p[0l + p[ll*p[l] + p[2]*p[2]));

ux = p[0l/r;

uy = p[1]/r;

uz = p[2]/r;

ag = CGMN / (r'r);

dvgj = ag * CJG5 * ag;

dvgze = ag + dvgj + ag*uz*CJAG*uz*ag;

• dvgx = dvgze * ux;

• dvgy = dvgze * uy;

• dvgz = (2*dvgj + dvgze) * uz;

/* *** End of Subroutine dvg *** */

Figure 6.2 : Software Code for Solving Equations (11/14)

57

/* *** Subroutine to find the Jacobian Matrix *** */

void jm(double jf[NUMBER_OUT][NUMBER_OUT], double* x, double* y)

{
double f_plus[NUMBER_OUT], f_minus[NUMBER_OUT];

double x_plus[NUMBER_IN], x_minus[NUMBER_IN];

int i, j;

for (i = 0; i < NUMBER_OUT; i++){

for (j = 0; j < NUMBER_IN; j++){

if(j ==i)

{

}
else

{

}
}

x_plus[j] = x[j] + h;

x_minus[j] = x[j] - h;

x_plus[j] = x[j];

x_minus[j] = x[j];

fn(f_plus , x_plus , y);

fn(f_minus, x_minus, y);

for (j = 0; j < NUMBER_OUT; j++){

jf[j][i] = (f_minus[j]-f_plus[j]) / (2*h);

}
}

}

/* *** End of Subroutine jm *** */

Figure 6.2 : Software Code for Solving Equations (12/14)

58

#include "e:\bcchaewton_header.h"

/* *** Subroutine to check the solution *** */

void check(double*x)

double z[NUMBER_OUT];

double dvgx0, dvgy0, dvgz0, dvgxl, dvgyl, dvgzl;

double CG11, CG12, CG13, CG21, CG22, CG23;

double RG11, RG12, RG13, RG21, RG22, RG23;

double RG31, RG32, RG33;

double DVSX, DVSY, DVSZ;

void dvg(double*, double*, double*, double*);

CGll = 0.14379912;

CG12 = -0.86644896;

CG13 = 0.47810879;

CG21 = 0.09714823;

CG22 = 0.49315612;

CG23 = 0.86449942;

RGll =CGll;

RG21 = CG12;

RG31 = CG13;

RG12 = CG21;

RG22 = CG22;

RG32 = CG23;

RG13 = RG21*RG32 - RG22*RG31;

RG23 = RG31*RG12 - RG32*RG11;

RG33 = RG1 l*RG22 - RG12*RG21;

DVSX = RG12*x[6] + RG13*x[7] + RG1 l'x[8];

DVSY = RG22*x[6] + RG23*x[7] + RG21*x[8];

DVSZ = RG32*x[6] + RG33*x[7] + RG31*x[8];

dvg(&dvgx0, &dvgy0, &dvgz0, x);

Figure 6.2 : Software Code for Solving Equations (13/14)

59

z[0] = x[0] + x[3] + 0.5*(DVSX + dvgx0);
z[1]=x[1]+x[4]+ 5*(DVSY+dvgy0);
z[2] = x[2] + x[5] + 0.5*(DVSZ + dvgz0);

dvg(&dvgxl, &dvgyl, &dvgzl, z);

z[3] = x[3] + DVSX + 0.5*(dvgx0 + dvgxl);
z[4] = x[4] + DVSY + 0.5*(dvgy0 + dvgyl);
z[5] = x[5] + DVSZ + 0.5*(dvgz0 + dvgzl);

/* Print out the result of checking */

printf('%a Result of Checking:kn");

printf("kn xl = %10.3e yl = %10.3e zl =

printf("kn vxl = %10.3e vyl = %10.3e

% 10.3ekn",z[3],z[4],z[5]);

/* *** End of Subroutine check *** */

% 10.3e",z[0],z[1],z [2]);
vzl -

Figure 6.2 : Software Code for Solving Equations (14/14)

60

For theoutput variables:
y[0] = 1.001e+07
y[1] = 1.001e+07
y[2] = 2.002e+07
y[3] = -9.990e+03
y[4] = 9.990e+03
y[5] = 1.998e+04

For the samplepoints:
x[6] = -1.000e+02
x[7] = -1.000e+02
x[8] = -1.000e+02

Iteration

0 X = 1.00e+07Y= 1.00e+07Z= 2.00e+07
VX = -9.90e+03VY= 9.90e+03VZ= 2.00e+04
Error = 2.43e+04

X = 1.00e+07Y= 1.00e+O7Z= 2.00e+07
VX = -9.88e+03VY= 1.01e+04VZ= 2.01e+04
Error = 2.61e-05

The solution is:

x[0] = 1.002e+07
x[1] = 1.000e+07
x[2] = 2.000e+07
x[3] = -9.880e+03
x[4] = 1.010e+04
x[5] = 2.010e+04
x[6] = -1.000e+02
x[7] = -1.000e+02
x[8] = -1.000e+02

Resultof Checking:

xl = 1.001e+07yl = 1.001e+07zl = 2.002e+07
vxl = -9.990e+03vyl = 9.990e+03vzl = 1.998e+04

Figure6.3 : Resultof Iteration (1/8)

61

For the sample points:

x[6] = -1.000e+02

x[7] = -1.000e+02

x[8] = 1.O00e+02

Iteration

0 X = 1.00e+07

VX = -9.90e+03

Error = 2.44e+04

X = 1.00e+07

VX = -9.88e+03

Error = 2.59e-05

VY =

1.00e+07

9.90e+03

1.00e+07

1.01e+04

Z = 2.00e+07

VZ -- 2.00e+04

Z = 2.00e+07

VZ = 1.99e+04

The solution is:

x[0] = 1.002e+07

r'; 1] = l.O00e+07

x[2] = 2.000e+07

x[3] = -9.880e+03

x[4] = 1.010e+04

x[5] = 1.990e+04

x[6] = -1.000e+02

x[7] = -1.000e+02

x[8] = 1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07

vxl = -9.990e+03 vyl = 9.990e+03

zl = 2.002e+07

vzl = 1.998e+04

Figure 6.3 • Result of Iteration (2/8)

62

For the samplepoints:

x[6] = -1.000e+02
x[7] = 1.000e+02
x[8] -- -1.000e+02

Iteration

0 X = 1.00e+07

VX = -9.90e+03

Error = 2.44e+04

y ,_.

VY =

X = 1.00e+07

VX = -9.88e+03

Error = 2.60e-05

1.00e+07

9.90e+03

1.00e+07

9.90e+03

Z = 2.00e+07

VZ = 2.00e+04

Z = 2.00e+07

VZ = 2.01e+04

The solution is:

x[0] = 1.002e+07

x[I] = 1.000e+07

x[2] = 2.000e+07

x[3] = -9.880e+03

x[4] = 9.900e+03

x[51 = 2.010e+04

x[6] = -1.000e+02

x[7] = 1.000e+02

x[8] = -1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07 zl = 2.002e+07

vxl = -9.990e+03 vyl = 9.990e+03 vzl = 1.998e+04

Figure 6.3 • Result of Iteration (3/8)

63

For the sample points:

x[6] = -1.000e+02

x[7] = 1.000e+02

x[8] = 1.000e+02

I_r_ion

0 X = 1.OOe+07

VX = -9.90e+03

Error = 2.45e+04

Y -- 1.00e+07

VY = 9.90e+03

X = 1.00e+07

VX = -9.88e+03

Error = 2.57e-05

Y = 1.00e+07

VY = 9.90e+03

Z = 2.00e+07

VZ = 2.00e+04

Z = 2.00e+07

VZ = 1.99e+04

The solution is:

x[0] = 1.002e+07

x[1] = 1.000e+07

x[2] = 2.000e+07

x[3] = -9.880e+03

x[4] = 9.900e+03

x[5] = 1.990e+04

x[6] = -1.000e+02

x[7] = 1.000e+02

x[8] = 1.000e+02

Result of Checking:

xl = 1.001e+07 yl -1.001e+07 zl = 2.002e+07

vxl = -9.990e+03 vyl = 9.990e+03 vzl = 1.998e+04

Figure 6.3 • Result of Iteration (4/8)

64

For the samplepoints:

x[6] = 1.000e+02
x[7] = -1.000e+02
x[8] = -1.000e+02

Iteration

0 X = 1.00e+07
VX = -9.90e+03
Error = 2.43e+04

Y = 1.00e+07
VY = 9.90e+03

X = 1.00e+07
VX = -1.01e+04
Error = 2.61e-05

Y = 1.00e+07
VY = 1.01e+04

Z = 2.00e+07
VZ = 2.00e+04

Z = 2.00e+07
VZ = 2.01e+04

The solution is:

x[0] = 1.002e+07
x[1] = 1.000e+07

x[2] = 2.000e+07

x[3] =-1.008e+04

x[4] = 1.010e+04

x[5] = 2.010e+04

x[6] = 1.000e+02

x[7] = -1.000e+02

x[8] = -1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07

vx 1 = -9.990e+03 vy 1 = 9.990e+03

zl = 2.002e+07

vzl = 1.998e+04

Figure 6.3 • Result of Iteration (5/8)

65

For the samplepoints:

x[6] = 1.000e+02
x[7] = -1.000e+02
x[81= 1.O00e+02

I_rafion

0 X = 1.00e+07
VX = -9.90e+03
Error = 2.44e+04

Y = 1.00e+07
VY = 9.90e+03

X = 1.00e+07

VX = -1.01e+04

Error = 2.58e-05

Y = 1.00e+07

VY = 1.01e+04

Z = 2.00e+07

VZ = 2.00e+04

Z = 2.00e+07

VZ = 1.99e+04

The solution is:

x[0] = 1.002e+07

x[1] = 1.000e+07

x[2] = 2.000e+07

x[3] = -1.008e+04

x[4] = 1.010e+04

x[5] = 1.990e+04

x[6] = 1.000e+02

x[7] = -1.000e+02

x[8] = 1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07 zl = 2.002e+07

vxl = -9.990e+03 vyl = 9.990e+03 vzl = 1.998e+04

Figure 6.3 : Result of Iteration (6/8)

66

For the samplepoints:

x[6] = 1.000e+02
x[7] = 1.000e+02
x[8] = -1.000e+02

Iteration

0 X = 1.00e+07
VX = -9.90e+03
Error = 2.43e+04

X = 1.00e+07
VX = -1.01e+04
Error = 2.59e-05

Y = 1.00e+07 Z =
VY = 9.90e+03 VZ =

Y = 1.00e+07 Z =
VY = 9.90e+03 VZ =

2.00e+07
2.00e+04

2.00e+07
2.01e+04

The solution is:

x[0] = 1.002e+07
x[1] = 1.000e+07
x[2] = 2.000e+07
x[3] = -1.008e+04
x[4] = 9.900e+03
x[5] = 2.010e+04
x[6] = 1.000e+02
x[7] = 1.000e+02
x[8] = -1.000e+02

Resultof Checking:

xl = 1.001e+07yl = 1.001e+07
vx1 = -9.990e+03vy1 = 9.990e+03

zl = 2.002e+07
vzl = 1.998e+04

Figure 6.3 : Resultof Iteration (7/8)

67

For the sample points:

x[6] = 1.O00e+02

x[7] = 1.000e+02

x[8] = 1.000e+02

Iteration

0 X = 1.00e+07

VX = -9.90e+03

Error = 2.44e+04

X = 1.00e+07

VX = -1.01e+04

Error = 2.57e-05

Y = 1.00e+07 Z =

VY = 9.90e+03 VZ =

Y = 1.00e+07 Z =

VY = 9.90e+03 VZ =

2.00e+07

2.00e+04

2.00e+07

1.99e+04

The solution is:

x[0] = 1.002e+07

x[1] = 1.000e+07

x[2] - 2.000e+07

x[3] = -1.008e+04

x[4] = 9.900e+03

x[5] = 1.990e+04

x[6] = 1.000e+02

x[7] = 1.00(_+02

x[8] = 1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07

vxl = -9.990e+03 vyl = 9.990e+03

zl = 2.002e+07

vzl = 1.998e+04

Figure 6.3 : Result of Iteration (8/8)

68

For the output variables:
y[0] = 1.001e+07
y[1] = 1.001e+07
y[2] = 2.002e+07
y[3] = -9.990e+03
y[4] = 9.990e+03
y[5] = 1.998e+04

For the samplepoints:
x[6] = -1.000e+02
x[7] = -1.000e+02
x[8] = -1.000e+02

Iteration

0 X =-2.10e+07 y =
VX = 0.00e+00 VY =
Error = 3.82e+07

1 X = 1.00e+07 y =
VX = -9.95e+03 VY =
Error = 9.67e+01

2 X = 1.00e+07 y =
VX = -9.88e+03 VY =
Error = 9.23e-10

0.00e+00
0.00e+00

1.00e+07
1.01e+04

1.00e+07
1.01e+04

The solution is:
x[0] = 1.002e+07
x[1] = 1.000e+07
x[2] = 2.000e+07

x[3] = -9.880e+03

x[4] = 1.010e+04

x[5] = 2.010e+04

x[6] = -1.000e+02

x[7] = -l.000e+02

x[8] = -1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07

vx 1 = -9.990e+03 vy 1 = 9.990e+03
zl = 2.002e+07

vzl = 1.998e+04

Z = 0.00e+00

VZ -- 0.00e+00

Z = 2.00e+07

VZ = 2.01e+04

Z = 2.00e+07

VZ = 2.01e+04

Figure 6.4 • Result for a Different Initial Guess (1/8)

69

For the samplepoints:

x[6] = -1.000e+02
x[7] = -1.O00e+02
x[8] = 1.O00e+02

Iteration

0 X =-2.10e+07
VX = 0.00e+00
Error = 3.82e+07

X = 1.00e+07
VX = -9.95e+03
Error = 9.67e+01

2 X = 1.00e+07
VX = -9.88e+03
Error = 9.23e-10

Y = 0.00e+00
VY = 0.00e+00

Y = 1.00e+07
VY = 1.01e+04

Y = 1.00e+07
VY = 1.01e+04

Z = 0.00e+00
VZ = 0.00e+00

Z = 2.00e+07

VZ = 1.99e+04

Z = 2.00e+07

VZ = 1.99e+04

The solution is:

x[O] = 1.002e+07

x[1] = 1.O00e+07

x[2] = 2.000e+07

x[3] = -9.880e+03

x[4] - 1.010e+04

x[5] = 1.990e+04

x[6] = -1.000e+02

x[7] = -1.000e+02

x[8] = 1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07

vx 1 = -9.990e+03 vy 1 = 9.990e+03

zl = 2.002e+07

vzl = 1.998e+04

Figure 6.4 : Result for a Different Initial Guess (2/8)

70

For the samplepoints:

x[6] = -1.000e+02
x[7] = 1.000e+02
x[8] = -1.000e+02

Iteration

0 X = -2.10e+07
VX = 0.00e+00
Error = 3.82e+07

Y = 0.00e+00
VY = 0.00e+O0

X = 1.00e+07
VX = -9.95e+03
Error = 9.67e+01

Y = 1.00e+07
VY = 9.90e+03

X = 1.00e+07
VX = -9.88e+03
Error = 9.19e-10

Y = 1.00e+07
VY = 9.90e+03

Z = 0.00e+00
VZ = 0.00e+00

Z = 2.00e+07
VZ = 2.01e+04

Z = 2.00e+07
VZ = 2.01e+04

The solution is:

x[0] = 1.002e+07
x[1] = 1.000e+07
x[2] = 2.000e+07
x[3] = -9.880e+03
x[4] = 9.900e+03
x[5] = 2.010e+04
x[6] = -1.000e+02
x[7] = 1.000e+02
x[8] = -1.000e+02

Resultof Checking:

xl = 1.001e+07yl = 1.001e+07
vxl = -9.990e+03vyl = 9.990e+03

zl = 2.002e+07
vzl = 1.998e+04

Figure 6.4 • Resultfor a Different Initial Guess(3/8)

71

For the samplepoints:

x[6] = -1.O00e+02
x[7] = 1.O00e+02
x[8] = 1.O00e+02

Iteration

0 X = -2.10e+07
VX = 0.00e+00
Error = 3.82e+07

X = 1.00e+07
VX = -9.95e+03
Error = 9.67e+01

2 X = 1.00e+07
VX = -9.88e+03
Error = 9.21e-10

Y = 0.00e+00
VY = 0.00e+00

Y = 1.00e+07
VY = 9.90e+03

Y = 1.00e+07
VY = 9.90e+03

Z = 0.00e+00

VZ = 0.00e+00

Z = 2.00e+07

VZ = 1.99e+04

Z = 2.00e+07

VZ = 1.99e+04

The solution is:

x[0] = 1.002e+07

x[1] = 1.000e+07

x[2] = 2.000e+07

x[3] = -9.880e+03

x[4] = 9.900e+03

x[5] = 1.990e+04

x[6] = -1.000e+02

x[7] = 1.000e+02

x[8] = 1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07

vxl = -9.990e+03 vyl = 9.990e+03

zl = 2.002e+07

vzl = 1.998e+04

Figure 6.4 : Result for a Different Initial Guess (4/8)

72

For the samplepoints:

x[6] = 1.000e+02
x[7] = -1.000e+02
x[8] = -1.000e+02

I_r_ion

0 X = -2.10e+07
VX = 0.00e+00
Error = 3.82e+07

X = 1.00e+07
VX = -1.01e+04
Error = 9.67e+01

2 X = 1.00e+07
VX = -1.01e+04
Error = 9.21e-10

Y = 0.00e+00
VY = 0.00e+00

Y = 1.00e+07
VY = 1.01e+04

Y = 1.00e+07
VY = 1.01e+04

Z = 0.00e+00
VZ = 0.00e+00

Z = 2.00e+07
VZ = 2.01e+04

Z = 2.00e+07
VZ = 2.01e+04

The solution is:

x[0] = 1.002e+07
x[1] = 1.000e+07
x[2] = 2.000e+07
x[3] = -1.008e+04
x[4] = 1.010e+04
x[5] = 2.010e+04
x[6] = 1.000e+02
x[7] = -1.00(O+02
x[8] = -1.000e+02

Resultof Checking:

xl = 1.001e+07yl = 1.001e+07zl = 2.002e+07
vxl = -9.990e+03vyl = 9.990e+03vzl = 1.998e+04

Figure 6.4 • Resultfor a Different Initial Guess(5/8)

73

For the samplepoints:

x[6] = 1.000e+02
x[7] = -1.000e+02
x[8] = 1.000e+02

I_r_ion

0 X =-2.10e+07
VX = 0.00e+00
Error = 3.82e+07

X = 1.00e+07
VX = -1.01e+04
Error = 9.67e+01

2 X = 1.00e+07
VX = -1.01e+04
Error = 9.22e-10

Y = 0.00e+00
VY = 0.00e+00

Y = 1.00e+07
VY = 1.01e+04

Y = 1.00e+07
VY = 1.01e+04

Z = 0.00e+00
VZ = 0.00e+00

Z = 2.00e+07
VZ = 1.99e+04

Z = 2.00e+07
VZ = 1.99e+04

The solution is:

x[0] = 1.002e+07
x[1] = 1.000e+07
x[2] = 2.000e+07
x[3] = -1.008e+04
x[4] = 1.010e+04
x[5] = 1.990e+04
x[6] = 1.000e+02
x[7] = -1.000e+02
x[8] = 1.000e+02

Result of Checking:

xl = 1.001e+07yl = 1.001e+07
vxl = -9.990e+03vyl = 9.990e+03

zl = 2.002e+07
vzl = 1.998e+04

Figure 6.4 : Resultfor a Different Initial Guess(6/8)

74

For the samplepoints:

x[6] = 1.000e+02
x[7] = 1.000e+02
x[8] = -1.000e+02

Iteration

0 X =-2.10e+07

VX = 0.00e+00

Error = 3.82e+07

y

VY=

X = 1.00e+07

VX = -1.01e+04

Error = 9.67e+01

Y

VY =

2 X = 1.00e+07

VX = -1.01e+04

E_or = 9.21e-10

1.00e+07

9.9_3

1.00e+07

9.9_3

Z = 0.00e+00

VZ = 0.00e+00

Z = 2.00e+07

VZ -- 2.01e+04

Z = 2.00e+07

VZ = 2.01e+04

u ¸

The solution is:

x[0] = 1.002e+07

x[1] = 1.000e+07

x[2] = 2.000e+07

x[3] = -1.008e+04

x[4] = 9.900e+03

x[5] = 2.010e+04

x[6] = 1.000e+02

x[7] = 1.000e+02

x[8] = -1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07

vx 1 = -9.990e+03 vy 1 = 9.990e+03

zl = 2.002e+07

vzl = 1.998e+04

Figure 6.4 • Result for a Different Initial Guess (7/8)

75

For the samplepoints:

x[6] = 1.000e+02
x[7] = 1.000e+02
x[8] = 1.000e+02

Iteration

0 X =-2.10e+07
VX = 0.00e+00
Error = 3.82e+07

Y = 0.00e+00
VY = 0.00e+00

X = 1.00e+07
VX = -1.01e+04
Error = 9.67e+01

Y = 1.00e+07
VY = 9.90e+03

2 X = 1.00e+07
VX = -1.01e+04
Error = 9.20e-10

Y = 1.00e+07
VY = 9.90e+03

Z = 0.00e+00
VZ = 0.00e+00

Z = 2.00e+07
VZ = 1.99e+04

Z = 2.00e+07
VZ = 1.99e+04

The solution is:

x[0] = 1.002e+07

x[1] = 1.000e+07

x[2] = 2.000e+07

x[3] = -1.008e+04

x[4] = 9.900e+03

x[5] = 1.990e+04

x[6] = 1.000e+02

x[7] = 1.000e+02

x[8] = 1.000e+02

Result of Checking:

xl = 1.001e+07 yl = 1.001e+07

vx 1 = -9.990e+03 vy 1 = 9.990e+03

zl = 2.002e+07

vzl = 1.998e+04

Figure 6.4 : Result for a Different Initial Guess (8/8)

76

7. Conclusion

The Titan II Space Launch Vehicle Digital Flight Control System is modeled using the

Dynamic Flowgraph Methodology. This DFM model of the embedded system can be

used to analyze the system to discover possible failures. This is an attempt to test DFM

on a real embedded system in which the software code is available.

Dynamic Flowgraph Methodology is a tool for analyzing embedded systems in a

"systems" approach. This tool is developed to fill in the deficiencies found in currently

available reliability and safety analysis approaches. These existing approaches generally

follow the philosophy of separating the hardware and software porions in the assurance

analysis. On the other hand, DFM is a tool that integrates in one process the modeling

and analysis of hardware and software components of an embedded system. In addition,

depending on the availability of the software code used in the embedded system, DFM

can focus the analysis on the software design or the software implementation. This paper

demonstrates the latter situation.

The modeling framework in DFM is capable of representing features of modem day

embedded systems. In particular. DFM allows functional, discontinuous, and dynamic

features to be represented in the model. For the Titan II embedded system, the functional

behavior is modeled by process variable nodes, transfer boxes, and causality edges, the

discrete behavior is represented by process variable nodes and conditioning edges, while

the software executions are modeled using the time-transition network. The model

developed will then be used in Step 2 for identifying unwanted behavior. The algorithmic

approach of backtracking and the knowledge base established in Step 1 can allow Step

2 to be automated. This is very important for analyzing a complex system such as the

Titan II embedded system.

One of the steps in developing the DFM model of the Titan II embedded system is the

construction of decision tables. These decision tables represent relationships between

various states of different parameters in the model. In constructing the decision tables

77

for subroutinesin the Titan II flight control software, the problem of combinatorial

explosion arises. As each subroutine takes in many input parameters, a huge number of

combinations of these input parameters has to be sampled for each subroutine in order to

complete the entries in the decision table. In addition, the size of the decision table

makes it very time consuming to look up the entries during backtracking of the model.

As the subroutines in the Titan II flight control software implement equations with

distinct physical meaning, it is possible to take advantage of this fact and avoid the

construction of the decision tables prior to the analysis. In backtracking the DFM model

to construct a timed-fault tree, if a subroutine is encountered and certain output values

calculated from this subroutine exist in a branch in the timed fault tree, this subroutine

can be solved in reverse to enter the entries next level down the fault tree. The solving

algorithm is based on the Newton-Raphson Method for solving a system on non-linear

equations, with modifications to account for the difference in the number of unknowns

and the number of equations. In addition, the model developed in Step 1 will indicate

whether switching actions can take place in the particular subroutine. This allows the

appropriate equations to be solved. This approach is applied to one of the subroutines in

the flight control software. The results demonstrate that convergence can be achieved

very rapidly.

78

8. References

Beizer, B., (1990), Software Testing Techniques, Van Nostrand Reinhold.

Caldarola, L., (1980), Fault Tree Analysis with Multistate Components, Synthesis

and Analysis Methods for Safety and reliability Studies, G.E. Apostolakis, S.

Garribba, G. Volta, Eds. New York: Plenum Press, pp. 199-248.

Dummer, G.W.A., Reiche, H. and Hura, G.S., (1991), Special Issue: Petri Nets

and Related Graph Models, Microelectronics and Reliability, 31.

Fr6berg, C.E., (1985), Numerical Mathematics: Theory and Computer Application,

Benjamin/Cummings.

Garrett, C., (1993), The Dynamic Flowgraph Methodology: A Methodology for

Assessing the Dependability of Embedded Software Systems, M.S. thesis,

University of California, Los Angeles.

Guarro, S.B. and Okrent, D., (1984), The Logic Flowgraph: A New Approach to

Process Failure Modeling and Diagnosis for Disturbance Analysis Applications,

Nuclear Technology, 67, pp. 348-359.

Guarro, S.B., (1988), PROGRAF_B: A Knowledge-Based System for the

Automated Construction of Nuclear Plant Diagnostic Models, Technical Progress

Report for Period Sept. 1987- March 1988 (by D. Okrent and G. Apostolakis) for

DOE Award no. DE-FGO3-UCLA, March.

Guarro, S.B., (1990), Diagnostic Models for Engineering Process Management: A

Critical Review of Objectives, Constraints and Applicable Tools, Reliability

Engineering and System Safety, 30, pp. 21-50.

Harvey, P.R., (1982), Fault-Tree Analysis of Software, M.S. Thesis, University of

California, Irvine.

Henley, E.J. and Kumamoto, H., (1991), Probabilistic Risk Assessment: Reliability

Engineering, Design, and Analysis, IEEE Press.

Johnson, L.W. and Riess, R.D., (1982), Numerical Analysis, Addison-Wesley.

Lapp, S.A. and Powers, G.J., (1977), Computer-aided Synthesis of Fault-trees,

IEEE Transaction on Reliability, R-26, pp. 2-13.

Leveson, N.G. and Harvey, P.R., (1983), Analyzing Software Safety, IEEE

Transaction on Software Engineering, SE-9, pp. 569-579.

79

Leveson,N.G. and Stolzy, J.L., (1987),SafetyAnalysis Using Petri Nets, IEEE

Transaction on Software Engineering, SE-13, pp. 358-363.

Maron, M.J., (1987), Numerical Analysis: A Practical Approach, MacMillan.

Martin Marietta Astronautics, (1988), Guidance, Control, and Ground Equations

for Flight Plan XX Volume II: Flight Control Equations XX-TOO1-H-08, June 24.

Martin Marietta Astronautics, (1991), Guidance, Control, and Ground Equations

for Flight Plan XX Volume I: Guidance Equations XX-UO01-I-05, February 18.

Morgan, E.T. and Razouk, R.R., (1987), Interactive State-Space Analysis of

Concurrent Systems, IEEE Transactions on Software Engineering, SE-13, pp.

1080-1091.

Murata, T., (1989), Petri Nets: Properties, Analysis and Applications, Proceedings

of the IEEE, 77, pp. 541-580.

Muthukumar, C.T., Guarro, S.B. and Apostolakis, G.E., (1991), Logic Flowgraph

Methodology: A Tool for Modeling Embedded Systems, Proceedings of the

IEEE/AIAA lOth Digital Avionics Systems Conference, Los Angeles, CA., Oct. 14-

17, pp.103-109.

Narayana, K.T. and Aby, A.A., (1988), Specification of Real-Time Systems in

Real-Time Temporal Interval Logic, Proceedings of the 1988 Conference on Real-

Time Systems, IEEE Press.

Peterson, J.L., (1981), Petri Net Theory and the Modeling of Systems, Prentice-

Hall.

Razouk, R.R. and Gorlick, M.M., (1989), A Real-Time Interval Logic for

Reasoning About Executions of Real-Time Programs, Proceedings of ACM

SIGSOFT '89, ACM Press Software Engineering Notes, 14, pp. 10-19.

Salem, S.L., Apostolakis, G.E. and Okrent, D., (1977), A New Methodology for

the Computer-Aided Construction of Fault Trees, Annals of Nuclear Energy, 4, pp.

417-433.

Salem, S.L., Wu, J.S. and Apostolakis, G.E., (1979), Decision Table Development

and Application to the Construction of Fault Trees, Nuclear Technology, 42, pp.
51-64.

80

Appendix A Logic Flowgraph Methodology (LFM)

A.1 LFM Concept

The Logic Flowgraph Methodology (LFM) [Guarro and Okrent, 1984], [Guarro, 1988],

[Guarro, 1990] was originally developed as a method for analyzing/diagnosing plant

processes with feedback and feedforward control loops. The LFM models take the form

of directed graphs, with relations of causality and conditional switching actions

represented by "causality edges" and "conditional edges" that connect network nodes and

special operators. Of these, causality edges represent important process variables and

parameters, and conditional edges represent the different types of possible causal or

sequential interactions among them. The LFM models provide, with certain limitations,

a complete representation of the way a system of interconnected and interacting

components and parameters is supposed to work and how this working order can be

compromised by failures and/or abnormal conditions and interactions.

The application of LFM, like that of its derivative, DFM, is typically a two-step process:

Step 1: The construction of a model for the system of interest. This model is built

by first identifying all of the basic process parameters by which the system

behavior can best be described and then by expressing the fundamental

cause-effect interactions (and the conditioning effects on these interactions

effected by faults and operational mode changes) among the parameters.

Step 2: The search for the manner in which specific process states (identified by

the values that certain parameters may assume within the given process)

may occur as the result of the propagation through the system of

perturbations produced by basic root cause events (such as system

component faults or manifestations of process-control logic errors). This

information is ordered in the form of a fault tree using AND and OR

gates. This stage is executable in the form of an automated procedure that

81

traces cause-effectrelationshipsbackwards through the LFM network

model.

A.2 Example

The application of LFM to a simple hardware system is illustrated in Figure. A. 1, where

a valve is used to control the flowrate downstream. In Figure. A.l(a), a piping and

instrumentation diagram (P&ID) is drawn to describe the functional layout of the system,

its components, and other elements of basic engineering data regarding the process. Other

important attributes, most notably the ones linked to operational logic, and control modes

as well as the analyst's own understanding of the system, while not directly contained nor

implicitly expressed in the P&ID, are nevertheless represented in the LFM model of the

system (Figure. A. l(b)). The LFM model is built with physical parameters UP, F, FM,

and VX as continuous variable nodes, where

UP = Upstream pressure,

F = Flow rate,

FM = Flow rate measured,

VX = Valve position at the present time,

and SF and CF as discrete variable nodes, where:

SF = Sensor state,

CF = Control Function.

The relationships between parameters are represented by gains in transfer boxes, which

may be different for different conditions. Edges connect nodes through transfer boxes.

An example of how relationships are represented in the LFM model is the direct

proportionality relationship between nodes UP and F. This is represented by a "/" in the

transfer box between the nodes. The two nodes are connected through the transfer box

using directed edges (Figure. A.l(b)). According to the different degraded states of the

sensor (SF), the relationship between the nodes F and FM may change. This is clearly

shown in the model (Figure. A.l(b)).

82

It should be noted that the results of an LFM analysis are obtained in the form of fault

trees, which show how the investigated system/process states may occur. LFM thus

shares, in the final form of the results it provides, many of the features of fault tree

analysis. The difference, however, is that it provides a documented model of the system's

behavior and interactions, which fault tree analysis does not provide directly. The most

important feature of this methodology is that once an LFM model has been developed,

it is not necessary to construct separate models for each system state of interest (as is the

case in fault tree analysis).

In Figure. A.l(c), the fault tree for the top event, "flow rate is high," is derived. By

working backward through the LFM model starting from the flow rate node F, we can

determine that the state, "flow rate F is high," is caused by either "upstream pressure UP

is high" AND "the valve opening is nominal," OR "the valve is completely open." This

information is implicitly contained in the LFM input operator before the node F.

Underlying this input operator is a decision table constructed by determining the states

of F from the combinations of the states of UP and VX. Thus, given a particular state

of F, the information organized in the decision table can be used in reverse to determine

the combinations of UP and VX which cause this particular state of F. This information

is explicitly denoted in the resulting fault tree by connecting events with logical AND and

OR gates.

83

"11
_°

(-.

:1>

ITi
X

3
"0

0

r-
"1"!

o
c1

_0

Q.

"rl

m

:1>

m

t/)
O_

C_

-n
_>
C

:]:1
ITI
ITI
(J)

O_
_z
m_

m_._
z__
-I(I)

-n z
m>

z__

w

o

"0

0
0

CO

r-
-1"i

0

IT]
I'--

I'_ <.

L

_ DI:]

®

I

84

Appendix B Dynamic Fiowgraph Methodology Analysis

B.1 Framework for Implementing Step 2

The result of the analysis of the digital control system model developed in Step 1 is

presented as timed fault trees. A timed fault tree takes the form of combinations of

conventional "static" fault trees which describe the system states at different time steps.

Essentially, a timed fault tree is like a series of snapshots of the system evolution, with

each snapshot presented as a conventional fault tree.

Conventional fault tree analysis is very well established in the areas of safety and

reliability analysis. Originally developed at the Bell Laboratory, fault tree analysis has

been used to analyze nuclear power plants [Henley and Kumamoto, 1991], chemical

processes [Lapp and Powers, 1977], and software [Leveson and Harvey, 1983]. It should

be noted at this point that the fault trees derived from a DFM analysis are not limited to

the binary true/false logic of conventional fault tree analysis. Methods have been

developed for finding minimal cut sets (usually called "prime implicants") of multi-state

logic fault trees [Caldarola, 1980].

B.2 Implementation of Step 2

To construct a timed fault tree, we first have to identify a particular system condition of

interest (desirable or undesirable). This system condition is expressed in terms of the

states of the process variable nodes. The DFM model is then analyzed by backtracking

through the network of transfer boxes and transition boxes to find the cause of these

variable states. The information discovered at each step of the backtracking process is

represented in the timed fault trees.

B.3 Example Application

An example of how to construct a timed fault tree from the information provided in the

85

DFM model is shown in Figure. B.1. The hypotheticalsystemmodel consistsof 5

Processvariable nodesrepresentingvariablesA, B, C, D, and E, with eachvariable

discretizedinto 3 states(0, 1,2). NodesA andB areinputsto nodeC througha transfer

box, and nodesC and D are inputs to nodeE througha transition box. The decision

tablesarealso shownin Figure.B.1.

Supposewe want to analyzehow E = 2 is reached.This is done by constructing a timed

fault tree with E = 2 as the top event. The timed fault tree is shown in Figure. B.2.

From decision table II in Figure. B. 1, we can determine that E = 2 is caused by either C

= 0 and D = 1, or C = 2 and D = 0. This information is represented in the first level

below E = 2. Note that C, D, and E are linked by a transition box, so in the timed fault

tree we have indicated that there is a time transition between satisfying the states of C

and D, and reaching the state E = 2. Next, we find from decision table I in Figure. B.2

thatC=0isduetoA=0andB= 1, andC=2iscausedbyA= 1 andB=2, orA=

2 and B = O. This information is then represented in the timed fault tree at the next level.

The example just given is simple enough to illustrate how events can be traced to their

cause through transfer boxes and transition boxes. In real digital control systems, there

are usually feedback or feedforward characteristics. This can cause a node to be traced

back to itself in the fault tree construction. Consistency rules must be applied when these

situations are encountered. Unlike established consistency checking rules for conventional

fault trees which only check against static relationships between variables, these

consistency rules must also reflect dynamic relationships; e.g., some variables may not

be able to vary independently in time, but must instead satisfy some function of the other

variables at different times. This dynamic consistency checking may be performed by

developing a rule base, with specific rules for each variable, which reflect that variables

allowed dynamic behavior as a function of time and any other necessary variables, as well

as constraints on the static relationships between variables.

86

II

°_

III OC_l ',-- OO ',--C_l ',-- O

a 0',-- O.IO',- 040',-- 04

0 00 O',-',-'',-'O.IO4 O.I

I_ O'," O.I O',- O40','- O,I

'< OO O ',- ',- ',- O.I O,I C_l

I1)0oi-

°8
CD
(D

i-
ra

Ii

O

O
am

,,,11,,--I

cn

m
m

m m

'-a:i
O

Ii

87

"1"1
Im

e-
•,,,iI

"11

m

--I
"1

CD

O
,--i I

i,,-I,,

_r

"11

O
Q.
n

io

TI
Ii

l-
"1

II

I

TI
O

II
I_O

88

Appendix C Titan II Space Launch Vehicle Digital Flight Control System

The function of the Titan II SLV Digital Flight Control System [Martin Marietta, 1988],

[Martin Marietta, 1991] is to maintain attitude stability of the vehicle from liftoff to

payload release. The system measures the orientation and acceleration and uses these

measurements to calculate the appropriate engine deflection to maintain flight stability.

The Titan II SLV DFCS consists of the Missile Guidance Computer and the flight control

software, the Attitude Rate Sensing System, the Inertial Measurement Unit (IMU), and

the hydraulic actuators. Each of these subsystems will be discussed below.

C.1 Flight Control Software

The Titan II flight control software is made up of three major routines; the Real-Time-

Interrupt (RTI), the Minor Cycle, and the Major Cycle. Each of these routine is

composed of a number of subroutines for carrying out dedicated calculations.

The Real-Time-Interrupt is responsible for reading in data from the sensing devices, i.e.

from the IMU and the rate sensing system, handling telemetry, giving commands to the

hydraulic actuators, and issuing engine shutdown commands. Inputs are read in and

outputs are given out every 40 msec (during powered flight) or 20 msec (during coast

flight).

The Minor Cycle makes use of the data read in during the RTI and the guidance

information supplied by the Major Cycle to calculate the proper engine deflections. The

resulting commands are then issued to the actuators during the Real-Time-Interrupt.

The Major Cycle provides guidance of the flight path. It determines the type of

maneuvers to be executed at a certain phase.

The three major routines share the computer resource in the Missile Guidance Computer.

89

The sharingof the computerresourcesis shownin FigureC.1. TheRTI hasthe highest

priority, it is executedevery5 msecandlastsa very shorttime. All calculationsrelevant

to the Minor Cycle andthe Major Cycle aresuspended.When it is time to executethe

RTI, the computerstoresthe addressof the code it is currently implementingand the

results gotten so far. After executingthe RTI, the computerresumesthe calculation

where it left off.

The Minor Cycle has the next highestpriority, and completesevery40 msec during

poweredflight andevery20 msecduringcoastflight. The actualcalculationtime is less

than40 msec/20msec. All thetime left duringthat periodwill beusedup by theMajor

Cycle calculations.

The Major Cycle hasthe lowest priority amongthe threemajor routines. It completes

every 1 sec. Calculationtakesplacein thetime-slot unusedeveryMinor Cycle. All the

majorcyclecalculationactuallycompletesin lessthan1sec. Thetime-slotnormallyused

by the Major Cycle after its completion is dedicatedto backgroundcalculations.

Backgroundcalculationis not relevantto flight control andwill not bediscussedhere.

C.2 The Attitude Rate Sensing System

The Attitude Rate Sensing System consists of gyros. The gyros measure the pitch rate

and the yaw rate of the vehicle.

A schematic of a gyro is shown in Figure C.2. It consists of a float spinning with angular

momentum H in an inertial casing. As input rate to is sensed, the spinning float will

rotate about the output axis according to the physical law O = H x to. Thus, the amount

of angular motion can be determined by measuring the rotation about the output axis.

90

E
0

8

_O

E
0
CO

u)

E
0
CO

E
O

Q.
2
Q)
r-

Q)
E

o_

f-

I1)
rr

o

0

t-

Q)
o

0

0

i-
0

o_

_o

0
"0
t-

.o

c0

rn

Q)

0

(D
rr

0_

E
0
0
0

E_
c'-

.m
L._

c_
c-

U)

d
(D

E_
.m

LL

¢0
E
0

91

Spin (H)

Y
Input(w)

_- Output(0)

Roat

Input (w)

Output (0)

Figure C.2 : Schematic of a Gyro

92

C.3 The Inertial Measurement Unit (IMU)

The IMU consists of a platform and associated instruments to measure the vehicle's

acceleration and rotations. The acceleration is measured by the accelerometers, while the

rotation is measured by the synchros. The IMU is shown in figure C.3.

A schematic of an accelerometer is shown in Figure C.4. It consists of a shuttle mass

located inside a case. When the case undergoes an acceleration a, the shuttle mass moves

against the spring due to its inertia. The electromagnet is energized to restore the shuttle

mass back to its null position. A measurement of the electromagnet current needed to

restore the shuttle mass is then a measurement of a.

A synchro is an electromechanical transducer which converts a an angular motion 0 into

a two channel electrical output signal. One channel gives K sin(0-120 °) and the other

gives K sin(0-60°), where K is the instrument's constant.

C.4 The Hydraulic Actuators

The hydraulic actuators are used to deflect the thrust chambers for steering the vehicle.

The limit of deflection is approximately 4.93 °. In Stage I, where there is two thrust

chambers, the schematic for roll, pitch, and yaw corrections are shown in Figure C.5.

93

Platform Axis

Outer Axis Inner Oimbal

Middle Oim_l

Middel Axis and

Issy_:_ Ax_

Synchro
Axis ¥

a Synchro
Axis

Figure C.3 : The Inertial Measurement Unit

94

O©

F

_/vv_ShuttleMass _,/'v__

electromagnet

/

O©

Jl

a

Figure C.4 : Schematic of an Accelerometer

95

Yaw Axis

Pitch Axis

Rear View of

the Rocket

Thrust

Chambers

 EARTH

Roll Correction Pitch Correction Yaw Correction

m_ indicates deflection of the thrust chamber

Figure C.5 • Working of the Hydraulic Actuators

96

